import gradio as gr import pandas as pd image_path = "data/protein_dendrogram.png" protein_clusters = pd.read_excel('data/protein_clusters.xlsx') max_length = 500 protein_clusters['proteins'] = protein_clusters['proteins'].apply(lambda x: x[:max_length] + ('...' if len(x) > max_length else '')) protein_clusters['protein groups'] = protein_clusters['protein groups'].apply(lambda x: x[:max_length] + ('...' if len(x) > max_length else '')) protein_clusters['protein features'] = protein_clusters['protein features'].apply(lambda x: x[:max_length] + ('...' if len(x) > max_length else '')) with gr.Blocks() as demo: gr.Markdown("# Protein similarity from BERT point of view") gr.Markdown("This app displays protein similarity captured in the model [unikei/bert-base-proteins](" "https://huggingface.co/unikei/bert-base-proteins).") gr.Image(image_path, label="Right click to zoom in new tab.", container=True ) gr.Markdown("\n") gr.Markdown("Click on the [link](https://huggingface.co/spaces/unikei/proteins-from-bert-point-of-view/blob/main/data/protein_clusters.xlsx) to download the spreadsheet.") gr.DataFrame(protein_clusters, interactive=False, wrap=True, column_widths=[5, 5, 30, 30, 30]) # demo.launch()