"""Routines that implement processing data & getting models. This file includes various routines for processing & acquiring models, for later use in the code. The table data preprocessing is straightforward. We first applying scaling to the data and fit a random forest classifier. The processing of the image data is a bit more complex. To simplify the construction of the explanations, the explanations don't accept images. Instead, for image explanations, it is necessary to define a function that accept a array of 0's and 1's corresponding to segments for a particular image being either excluded or included respectively. The explanation is performed on this array. """ import numpy as np from copy import deepcopy from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split import torch from torchvision import models, transforms from data.mnist.mnist_model import Net def get_xtrain(segs): """A function to get the mock training data to use in the image explanations. This function returns a dataset containing a single instance of ones and another of zeros to represent the training data for the explanation. The idea is that the explanation will use this data to compute the perturbations, which will then be fed into the wrapped model. Arguments: segs: The current segments array """ n_segs = len(np.unique(segs)) xtrain = np.concatenate((np.ones((1, n_segs)), np.zeros((1, n_segs))), axis=0) return xtrain def process_imagenet_get_model(data): """Gets wrapped imagenet model.""" # Get the vgg16 model, used in the experiments model = models.vgg16(pretrained=True) model.eval() # model.cuda() xtest = data['X'] ytest = data['y'].astype(int) xtest_segs = data['segments'] softmax = torch.nn.Softmax(dim=1) # Transforms normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) transf = transforms.Compose([ transforms.ToTensor(), normalize ]) t_xtest = transf(xtest[0])[None, :]#.cuda() # Define the wrapped model def get_wrapped_model(instance, segments, background=0, batch_size=64): def wrapped_model(data): perturbed_images = [] for d in data: perturbed_image = deepcopy(instance) for i, is_on in enumerate(d): if is_on == 0: perturbed_image[segments==i, 0] = background perturbed_image[segments==i, 1] = background perturbed_image[segments==i, 2] = background perturbed_images.append(transf(perturbed_image)[None, :]) perturbed_images = torch.from_numpy(np.concatenate(perturbed_images, axis=0)).float() predictions = [] for q in range(0, perturbed_images.shape[0], batch_size): predictions.append(softmax(model(perturbed_images[q:q+batch_size])).cpu().detach().numpy()) predictions = np.concatenate(predictions, axis=0) return predictions return wrapped_model output = { "model": get_wrapped_model, "xtest": xtest, "ytest": ytest, "xtest_segs": xtest_segs, "label": data['y'][0] } return output def process_mnist_get_model(data): """Gets wrapped mnist model.""" xtest = data['X'] ytest = data['y'].astype(int) xtest_segs = data['segments'] model = Net() model.load_state_dict(torch.load("../data/mnist/mnist_cnn.pt")) model.eval() model.cuda() softmax = torch.nn.Softmax(dim=1) def get_wrapped_model(instance, segments, background=-0.4242, batch_size=100): def wrapped_model(data): perturbed_images = [] data = torch.from_numpy(data).float().cuda() for d in data: perturbed_image = deepcopy(instance) for i, is_on in enumerate(d): if is_on == 0: a = segments==i perturbed_image[0, segments[0]==i] = background perturbed_images.append(perturbed_image[:, None]) perturbed_images = torch.from_numpy(np.concatenate(perturbed_images, axis=0)).float().cuda() # Batch predictions if necessary if perturbed_images.shape[0] > batch_size: predictions = [] for q in range(0, perturbed_images.shape[0], batch_size): predictions.append(softmax(model(perturbed_images[q:q+batch_size])).cpu().detach().numpy()) predictions = np.concatenate(predictions, axis=0) else: predictions = softmax(model(perturbed_images)).cpu().detach().numpy() return np.array(predictions) return wrapped_model output = { "model": get_wrapped_model, "xtest": xtest, "ytest": ytest, "xtest_segs": xtest_segs, "label": data['y'][0], } return output def process_tabular_data_get_model(data): """Processes tabular data + trains random forest classifier.""" X = data['X'] y = data['y'] xtrain,xtest,ytrain,ytest = train_test_split(X,y,test_size=0.2) ss = StandardScaler().fit(xtrain) xtrain = ss.transform(xtrain) xtest = ss.transform(xtest) rf = RandomForestClassifier(n_estimators=100).fit(xtrain,ytrain) output = { "model": rf, "xtrain": xtrain, "xtest": xtest, "ytrain": ytrain, "ytest": ytest, "label": 1, "model_score": rf.score(xtest, ytest) } print(f"Model Score: {output['model_score']}") return output