Spaces:
Runtime error
Runtime error
from cgitb import enable | |
from pyexpat import model | |
from statistics import mode | |
import numpy as np | |
import gradio as gr | |
import argparse | |
import os | |
from os.path import exists, dirname | |
import sys | |
import json | |
import flask | |
from PIL import Image | |
parent_dir = dirname(os.path.abspath(os.getcwd())) | |
sys.path.append(parent_dir) | |
from bayes.explanations import BayesLocalExplanations, explain_many | |
from bayes.data_routines import get_dataset_by_name | |
from bayes.models import * | |
from image_posterior import create_gif | |
def get_image_data(inp_image): | |
"""Gets the image data and model.""" | |
image = get_dataset_by_name(inp_image, get_label=False) | |
# print("image returned\n", image) | |
model_and_data = process_imagenet_get_model(image) | |
# print("model returned\n", model_and_data) | |
return image, model_and_data | |
def segmentation_generation(input_image, c_width, n_top, n_gif_imgs): | |
print("Inputs Received:", input_image, c_width, n_top, n_gif_imgs) | |
image, model_and_data = get_image_data(input_image) | |
# Unpack datax | |
xtest = model_and_data["xtest"] | |
ytest = model_and_data["ytest"] | |
segs = model_and_data["xtest_segs"] | |
get_model = model_and_data["model"] | |
label = model_and_data["label"] | |
# if (image_name == 'imagenet_diego'): | |
# label = 156 | |
# elif (image_name == 'imagenet_french_bulldog'): | |
# label = 245 | |
# Unpack instance and segments | |
instance = xtest[0] | |
segments = segs[0] | |
# Get wrapped model | |
cur_model = get_model(instance, segments) | |
# Get background data | |
xtrain = get_xtrain(segments) | |
prediction = np.argmax(cur_model(xtrain[:1]), axis=1) | |
# if image_name in ["imagenet_diego", "imagenet_french_bulldog"]: | |
# assert prediction == label, f"Prediction is {prediction} not {label}" | |
# Compute explanation | |
exp_init = BayesLocalExplanations(training_data=xtrain, | |
data="image", | |
kernel="lime", | |
categorical_features=np.arange(xtrain.shape[1]), | |
verbose=True) | |
rout = exp_init.explain(classifier_f=cur_model, | |
data=np.ones_like(xtrain[0]), | |
label=int(prediction[0]), | |
cred_width=c_width, | |
focus_sample=False, | |
l2=False) | |
# Create the gif of the explanation | |
return create_gif(rout['blr'], input_image, segments, instance, prediction[0], n_gif_imgs, n_top) | |
if __name__ == "__main__": | |
inp = gr.inputs.Image(label="Input Image (Or select an example)", type="pil") | |
out = [gr.outputs.HTML(label="Output GIF"), gr.outputs.Textbox(label="Prediction")] | |
iface = gr.Interface( | |
segmentation_generation, | |
[ | |
inp, | |
gr.inputs.Slider(minimum=0.01, maximum=0.8, step=0.01, default=0.01, label="cred_width", optional=False), | |
gr.inputs.Slider(minimum=1, maximum=10, step=1, default=5, label="n_top_segs", optional=False), | |
gr.inputs.Slider(minimum=10, maximum=100, step=1, default=30, label="n_gif_images", optional=False), | |
], | |
outputs=out, | |
examples=[["./data/diego.png", 0.01, 7, 50], | |
["./data/french_bulldog.jpg", 0.01, 5, 50], | |
["./data/pepper.jpeg", 0.01, 5, 50], | |
["./data/bird.jpg", 0.01, 5, 50], | |
["./data/hockey.jpg", 0.01, 5, 50]], | |
title="Reliable Post Hoc Explanations: Modeling Uncertainty in Explainability", | |
description = "Dylan Slack, Sophie Hilgard, Sameer Singh, and Hima Lakkaraju. NeurIPS 2021.", | |
article="Research paper and Github can be found [here](https://dylanslacks.website/reliable/index.html)" | |
) | |
iface.launch(enable_queue=True) |