Spaces:
Sleeping
Sleeping
twimbit-ai
commited on
Commit
β’
c6f8a21
1
Parent(s):
3b44354
Create test_web_rag.py
Browse files- test_web_rag.py +263 -0
test_web_rag.py
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import urllib.request
|
2 |
+
from urllib.parse import quote
|
3 |
+
from seleniumbase import SB
|
4 |
+
import markdownify
|
5 |
+
from bs4 import BeautifulSoup
|
6 |
+
from requests_html import HTMLSession
|
7 |
+
import html2text
|
8 |
+
import re
|
9 |
+
from openai import OpenAI
|
10 |
+
import tiktoken
|
11 |
+
from zenrows import ZenRowsClient
|
12 |
+
import requests
|
13 |
+
import os
|
14 |
+
from dotenv import load_dotenv
|
15 |
+
|
16 |
+
load_dotenv()
|
17 |
+
ZENROWS_KEY = os.getenv('ZENROWS_KEY')
|
18 |
+
client = OpenAI()
|
19 |
+
|
20 |
+
|
21 |
+
def get_fast_url_source(url):
|
22 |
+
session = HTMLSession()
|
23 |
+
r = session.get(url)
|
24 |
+
return r.text
|
25 |
+
|
26 |
+
|
27 |
+
def convert_html_to_text(html):
|
28 |
+
h = html2text.HTML2Text()
|
29 |
+
h.body_width = 0 # Disable line wrapping
|
30 |
+
text = h.handle(html)
|
31 |
+
text = re.sub(r'\n\s*', '', text)
|
32 |
+
text = re.sub(r'\* \\', '', text)
|
33 |
+
" ".join(text.split())
|
34 |
+
return text
|
35 |
+
|
36 |
+
|
37 |
+
def get_google_search_url(query):
|
38 |
+
url = 'https://www.google.com/search?q=' + quote(query)
|
39 |
+
# Perform the request
|
40 |
+
request = urllib.request.Request(url)
|
41 |
+
|
42 |
+
# Set a normal User Agent header, otherwise Google will block the request.
|
43 |
+
request.add_header('User-Agent',
|
44 |
+
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36')
|
45 |
+
raw_response = urllib.request.urlopen(request).read()
|
46 |
+
|
47 |
+
# Read the repsonse as a utf-8 string
|
48 |
+
html = raw_response.decode("utf-8")
|
49 |
+
|
50 |
+
# The code to get the html contents here.
|
51 |
+
soup = BeautifulSoup(html, 'html.parser')
|
52 |
+
|
53 |
+
# Find all the search result divs
|
54 |
+
divs = soup.select("#search div.g")
|
55 |
+
# print(divs)
|
56 |
+
url = []
|
57 |
+
for div in divs:
|
58 |
+
# Search for a h3 tag
|
59 |
+
results = div.select("h3")
|
60 |
+
urls = div.select('a')
|
61 |
+
|
62 |
+
# Check if we have found a result
|
63 |
+
# if (len(results) >= 1):
|
64 |
+
# # Print the title
|
65 |
+
# h3 = results[0]
|
66 |
+
# print(h3.get_text())
|
67 |
+
|
68 |
+
url.append(urls[0]['href'])
|
69 |
+
return url
|
70 |
+
|
71 |
+
|
72 |
+
def format_text(text):
|
73 |
+
soup = BeautifulSoup(text, 'html.parser')
|
74 |
+
results = soup.find_all(['p', 'h1', 'h2', 'span'])
|
75 |
+
text = ''
|
76 |
+
for key, result in enumerate(results):
|
77 |
+
if key % 2 == 0:
|
78 |
+
text = text + str(result) + ' '
|
79 |
+
else:
|
80 |
+
text = text + str(result) + ' '
|
81 |
+
return text
|
82 |
+
|
83 |
+
|
84 |
+
def get_page_source_selenium_base(url):
|
85 |
+
with SB(uc_cdp=True, guest_mode=True, headless=True) as sb:
|
86 |
+
sb.open(url)
|
87 |
+
sb.sleep(5)
|
88 |
+
page_source = sb.driver.get_page_source()
|
89 |
+
return page_source
|
90 |
+
|
91 |
+
|
92 |
+
def num_tokens_from_string(string: str, encoding_name: str) -> int:
|
93 |
+
encoding = tiktoken.get_encoding(encoding_name)
|
94 |
+
# encoding = tiktoken.encoding_for_model(encoding_name)
|
95 |
+
num_tokens = len(encoding.encode(string))
|
96 |
+
return num_tokens
|
97 |
+
|
98 |
+
|
99 |
+
def encoding_getter(encoding_type: str):
|
100 |
+
"""
|
101 |
+
Returns the appropriate encoding based on the given encoding type (either an encoding string or a model name).
|
102 |
+
"""
|
103 |
+
if "k_base" in encoding_type:
|
104 |
+
return tiktoken.get_encoding(encoding_type)
|
105 |
+
else:
|
106 |
+
return tiktoken.encoding_for_model(encoding_type)
|
107 |
+
|
108 |
+
|
109 |
+
def tokenizer(string: str, encoding_type: str) -> list:
|
110 |
+
"""
|
111 |
+
Returns the tokens in a text string using the specified encoding.
|
112 |
+
"""
|
113 |
+
encoding = encoding_getter(encoding_type)
|
114 |
+
tokens = encoding.encode(string)
|
115 |
+
return tokens
|
116 |
+
|
117 |
+
|
118 |
+
def token_counter(string: str, encoding_type: str) -> int:
|
119 |
+
"""
|
120 |
+
Returns the number of tokens in a text string using the specified encoding.
|
121 |
+
"""
|
122 |
+
num_tokens = len(tokenizer(string, encoding_type))
|
123 |
+
return num_tokens
|
124 |
+
|
125 |
+
|
126 |
+
def format_output(text):
|
127 |
+
page_source = format_text(text)
|
128 |
+
page_source = markdownify.markdownify(page_source)
|
129 |
+
# page_source = convert_html_to_text(page_source)
|
130 |
+
page_source = " ".join(page_source.split())
|
131 |
+
return page_source
|
132 |
+
|
133 |
+
|
134 |
+
def clean_text(text):
|
135 |
+
# Remove URLs
|
136 |
+
text = re.sub(r'http[s]?://\S+', '', text)
|
137 |
+
|
138 |
+
# Remove special characters and punctuation (keep only letters, numbers, and basic punctuation)
|
139 |
+
text = re.sub(r'[^a-zA-Z0-9\s,.!?-]', '', text)
|
140 |
+
|
141 |
+
# Normalize whitespace
|
142 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
143 |
+
|
144 |
+
return text
|
145 |
+
|
146 |
+
|
147 |
+
def call_open_ai(system_prompt, max_tokens=800, stream=False):
|
148 |
+
messages = [
|
149 |
+
{
|
150 |
+
"role": "user",
|
151 |
+
"content": system_prompt
|
152 |
+
}
|
153 |
+
]
|
154 |
+
|
155 |
+
stream = client.chat.completions.create(
|
156 |
+
model="gpt-3.5-turbo",
|
157 |
+
messages=messages,
|
158 |
+
temperature=0,
|
159 |
+
max_tokens=max_tokens,
|
160 |
+
top_p=0,
|
161 |
+
frequency_penalty=0,
|
162 |
+
presence_penalty=0,
|
163 |
+
stream=stream
|
164 |
+
)
|
165 |
+
return stream.choices[0].message.content
|
166 |
+
|
167 |
+
|
168 |
+
def url_summary(text, question):
|
169 |
+
system_prompt = """
|
170 |
+
Summarize the given text, please add all the important topics and numerical data.
|
171 |
+
|
172 |
+
While summarizing please keep this question in mind.
|
173 |
+
question:- {question}
|
174 |
+
|
175 |
+
text:
|
176 |
+
{text}
|
177 |
+
""".format(question=question, text=text)
|
178 |
+
return call_open_ai(system_prompt=system_prompt, max_tokens=800)
|
179 |
+
|
180 |
+
|
181 |
+
def get_google_search_query(question):
|
182 |
+
system_prompt = """
|
183 |
+
convert this question to the Google search query and return only query.
|
184 |
+
question:- {question}
|
185 |
+
""".format(question=question)
|
186 |
+
|
187 |
+
return call_open_ai(system_prompt=system_prompt, max_tokens=50)
|
188 |
+
|
189 |
+
|
190 |
+
def is_urlfile(url):
|
191 |
+
# Check if online file exists
|
192 |
+
try:
|
193 |
+
r = urllib.request.urlopen(url) # response
|
194 |
+
return r.getcode() == 200
|
195 |
+
except urllib.request.HTTPError:
|
196 |
+
return False
|
197 |
+
|
198 |
+
|
199 |
+
def check_url_pdf_file(url):
|
200 |
+
r = requests.get(url)
|
201 |
+
content_type = r.headers.get('content-type')
|
202 |
+
|
203 |
+
if 'application/pdf' in content_type:
|
204 |
+
return True
|
205 |
+
else:
|
206 |
+
return False
|
207 |
+
|
208 |
+
|
209 |
+
def zenrows_scrapper(url):
|
210 |
+
zen_client = ZenRowsClient(ZENROWS_KEY)
|
211 |
+
params = {"js_render": "true"}
|
212 |
+
response = zen_client.get(url, params=params)
|
213 |
+
|
214 |
+
return response.text
|
215 |
+
|
216 |
+
|
217 |
+
def get_new_question_from_history(pre_question, new_question, answer):
|
218 |
+
system_prompt = """
|
219 |
+
Generate a new Google search query using the previous question and answer. And return only the query.
|
220 |
+
|
221 |
+
|
222 |
+
previous question:- {pre_question}
|
223 |
+
answer:- {answer}
|
224 |
+
|
225 |
+
new question:- {new_question}
|
226 |
+
""".format(pre_question=pre_question, answer=answer, new_question=new_question)
|
227 |
+
|
228 |
+
return call_open_ai(system_prompt=system_prompt, max_tokens=50)
|
229 |
+
|
230 |
+
|
231 |
+
def get_docs_from_web(question, history, n_web_search, strategy):
|
232 |
+
if history:
|
233 |
+
question = get_new_question_from_history(history[0][0], question, history[0][1])
|
234 |
+
urls = get_google_search_url(get_google_search_query(question))[:n_web_search]
|
235 |
+
urls = list(set(urls))
|
236 |
+
docs = ''
|
237 |
+
yield f"Scraping started for {len(urls)} urls:-\n\n"
|
238 |
+
for key, url in enumerate(urls):
|
239 |
+
if '.pdf' in url:
|
240 |
+
yield f"Scraping skipped pdf detected. {key + 1}/{len(urls)} - {url} β\n"
|
241 |
+
continue
|
242 |
+
|
243 |
+
if strategy == 'Deep':
|
244 |
+
# page_source = get_page_source_selenium_base(url)
|
245 |
+
page_source = zenrows_scrapper(url)
|
246 |
+
formatted_page_source = format_output(page_source)
|
247 |
+
formatted_page_source = clean_text(formatted_page_source)
|
248 |
+
else:
|
249 |
+
page_source = get_fast_url_source(url)
|
250 |
+
formatted_page_source = format_output(page_source)
|
251 |
+
formatted_page_source = clean_text(formatted_page_source)
|
252 |
+
|
253 |
+
tokens = token_counter(formatted_page_source, 'gpt-3.5-turbo')
|
254 |
+
|
255 |
+
if tokens >= 15585:
|
256 |
+
yield f"Scraping skipped as token limit exceeded. {key + 1}/{len(urls)} - {url} β\n"
|
257 |
+
continue
|
258 |
+
|
259 |
+
summary = url_summary(formatted_page_source, question)
|
260 |
+
docs += summary
|
261 |
+
docs += '\n Source:-' + url + '\n\n'
|
262 |
+
yield f"Scraping Done {key + 1}/{len(urls)} - {url} β
\n"
|
263 |
+
yield {"data": docs}
|