Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files
NN_emobase_allfeature_model_score_69.00_20240304_1432.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:769acacd25d1bcc6206a7e22473da4f805e766adaad016e11217cccb5414b18d
|
3 |
+
size 1833169
|
app.py
CHANGED
@@ -6,16 +6,24 @@ import os
|
|
6 |
import pandas as pd
|
7 |
from sklearn.preprocessing import StandardScaler
|
8 |
|
9 |
-
|
10 |
from base64 import b64decode
|
11 |
|
|
|
|
|
|
|
|
|
12 |
import gradio as gr
|
13 |
|
14 |
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
def
|
19 |
smile = opensmile.Smile(
|
20 |
#feature_set=opensmile.FeatureSet.GeMAPSv01b,
|
21 |
feature_set=opensmile.FeatureSet.emobase,
|
@@ -32,17 +40,65 @@ def extract_features(audio_path):
|
|
32 |
|
33 |
return feature
|
34 |
|
35 |
-
def
|
36 |
# openSMILEで特徴量抽出
|
37 |
-
feature_vector =
|
38 |
|
39 |
# ロードしたモデルで推論
|
40 |
-
prediction =
|
41 |
#print(f"Prediction: {prediction}")
|
42 |
return prediction
|
43 |
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
fn = main,
|
47 |
inputs=[
|
48 |
gr.Audio(sources=["microphone","upload"], type="filepath")
|
@@ -50,5 +106,8 @@ gr.Interface(
|
|
50 |
outputs=[
|
51 |
"textbox"
|
52 |
],
|
53 |
-
live=True
|
54 |
-
|
|
|
|
|
|
|
|
6 |
import pandas as pd
|
7 |
from sklearn.preprocessing import StandardScaler
|
8 |
|
|
|
9 |
from base64 import b64decode
|
10 |
|
11 |
+
import onnx
|
12 |
+
import onnxruntime
|
13 |
+
import torch
|
14 |
+
|
15 |
import gradio as gr
|
16 |
|
17 |
|
18 |
+
model_names = ["DNN", "RandomForest"]
|
19 |
+
|
20 |
+
rf_model_path = "RF_emobase_20_model_top1_score0.6863_20231207_1537.joblib"
|
21 |
+
dnn_model_path = "NN_emobase_allfeature_model_score_69.00_20240304_1432.onnx"
|
22 |
+
|
23 |
+
dnn_model = onnxruntime.InferenceSession(dnn_model_path)
|
24 |
+
rf_model = joblib.load(rf_model_path)
|
25 |
|
26 |
+
def extract_features_rf(audio_path):
|
27 |
smile = opensmile.Smile(
|
28 |
#feature_set=opensmile.FeatureSet.GeMAPSv01b,
|
29 |
feature_set=opensmile.FeatureSet.emobase,
|
|
|
40 |
|
41 |
return feature
|
42 |
|
43 |
+
def predict_rf(input):
|
44 |
# openSMILEで特徴量抽出
|
45 |
+
feature_vector = extract_features_rf([input])
|
46 |
|
47 |
# ロードしたモデルで推論
|
48 |
+
prediction = rf_model.predict(feature_vector)
|
49 |
#print(f"Prediction: {prediction}")
|
50 |
return prediction
|
51 |
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
def extract_features_dnn(audio_path):
|
58 |
+
smile = opensmile.Smile(
|
59 |
+
#feature_set=opensmile.FeatureSet.GeMAPSv01b,
|
60 |
+
feature_set=opensmile.FeatureSet.emobase,
|
61 |
+
feature_level=opensmile.FeatureLevel.Functionals,
|
62 |
+
)
|
63 |
+
feature_df = smile.process_files(audio_path)
|
64 |
+
#output_features = ['F0env_sma_de_amean', 'lspFreq_sma_de[5]_linregc1', 'mfcc_sma[3]_linregc1', 'lspFreq_sma[6]_quartile1', 'lspFreq_sma_de[6]_linregerrQ', 'lspFreq_sma_de[6]_maxPos', 'lspFreq_sma_de[6]_iqr2-3', 'lspFreq_sma_de[7]_minPos', 'lspFreq_sma_de[4]_linregc1', 'lspFreq_sma_de[6]_linregerrA', 'lspFreq_sma_de[6]_linregc2', 'lspFreq_sma[5]_amean', 'lspFreq_sma_de[6]_iqr1-2', 'mfcc_sma[1]_minPos', 'mfcc_sma[4]_linregc1', 'mfcc_sma[9]_iqr2-3', 'lspFreq_sma[5]_kurtosis', 'lspFreq_sma_de[3]_skewness', 'mfcc_sma[3]_minPos', 'mfcc_sma[12]_linregc1']
|
65 |
+
df = pd.DataFrame(feature_df.values[0], index=feature_df.columns)
|
66 |
+
#df = df[df.index.isin(output_features)]
|
67 |
+
df = df.T
|
68 |
+
scaler = StandardScaler()
|
69 |
+
feature = scaler.fit_transform(df)
|
70 |
+
print(df.shape)
|
71 |
+
|
72 |
+
return feature
|
73 |
+
|
74 |
+
def softmax_calc_(pred):
|
75 |
+
if torch.argmax(pred) == torch.tensor(0) :
|
76 |
+
prediction = "question"
|
77 |
+
|
78 |
+
else:
|
79 |
+
prediction = "declarative"
|
80 |
+
return prediction
|
81 |
+
|
82 |
+
def predict_dnn(input):
|
83 |
+
# openSMILEで特徴量抽出
|
84 |
+
feature_vector = extract_features_dnn([input])
|
85 |
+
|
86 |
+
# ロードしたモデルで推論
|
87 |
+
onnx_outs = dnn_model.run(None, {"model_input":feature_vector})
|
88 |
+
print(onnx_outs)
|
89 |
+
prediction = softmax_calc_(torch.FloatTensor(onnx_outs))
|
90 |
+
print(f"Prediction: {prediction}")
|
91 |
+
return prediction
|
92 |
+
|
93 |
+
def main(model):
|
94 |
+
if model == "DNN":
|
95 |
+
return predict_dnn(input)
|
96 |
+
elif model == "RandomForest":
|
97 |
+
return predict_rf(input)
|
98 |
+
|
99 |
+
|
100 |
+
with gr.Blocks() as demo:
|
101 |
+
model = gr.Dropdown(choices=model_names),
|
102 |
fn = main,
|
103 |
inputs=[
|
104 |
gr.Audio(sources=["microphone","upload"], type="filepath")
|
|
|
106 |
outputs=[
|
107 |
"textbox"
|
108 |
],
|
109 |
+
live=True,
|
110 |
+
description="demo for Audio to question classifier"
|
111 |
+
|
112 |
+
|
113 |
+
demo.launch()
|