Spaces:
Running
Running
change structure
Browse files- app.py +208 -128
- new/app.py +0 -270
- new/requirements.txt +0 -17
- new/src/envs.py +0 -38
- requirements.txt +2 -1
- src/about.py +0 -60
- {new/src → src}/css_html_js.py +0 -0
- src/display/css_html_js.py +0 -105
- src/display/formatting.py +0 -27
- src/display/utils.py +0 -58
- src/envs.py +13 -0
- src/leaderboard/read_evals.py +0 -129
- src/populate.py +0 -58
- src/submission/check_validity.py +0 -36
- src/submission/submit.py +0 -69
- {new/src → src}/texts.py +0 -0
app.py
CHANGED
@@ -1,35 +1,95 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
3 |
import pandas as pd
|
4 |
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
-
from
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
)
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
EVAL_TYPES,
|
21 |
-
AutoEvalColumn,
|
22 |
-
fields,
|
23 |
-
)
|
24 |
-
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
25 |
-
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
26 |
-
from src.submission.submit import add_new_eval
|
27 |
|
28 |
|
29 |
def restart_space():
|
30 |
API.restart_space(repo_id=REPO_ID)
|
31 |
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
### Space initialisation
|
34 |
try:
|
35 |
print(EVAL_REQUESTS_PATH)
|
@@ -57,134 +117,154 @@ except Exception:
|
|
57 |
restart_space()
|
58 |
|
59 |
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
|
69 |
def init_leaderboard(dataframe):
|
70 |
if dataframe is None or dataframe.empty:
|
71 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
return Leaderboard(
|
73 |
value=dataframe,
|
74 |
-
datatype=[c.type for c in fields(AutoEvalColumn)],
|
75 |
select_columns=SelectColumns(
|
76 |
-
default_selection=
|
77 |
-
cant_deselect=[
|
78 |
label="Select Columns to Display:",
|
79 |
),
|
80 |
-
search_columns=[
|
81 |
-
|
82 |
-
|
83 |
-
ColumnFilter(
|
84 |
-
AutoEvalColumn.params.name,
|
85 |
-
type="slider",
|
86 |
-
min=0.01,
|
87 |
-
max=150,
|
88 |
-
label="Select the number of parameters (B)",
|
89 |
-
),
|
90 |
-
],
|
91 |
-
bool_checkboxgroup_label="Hide models",
|
92 |
interactive=False,
|
|
|
93 |
)
|
94 |
|
95 |
|
96 |
-
|
97 |
-
if profile or True:
|
98 |
-
gr.HTML(TITLE)
|
99 |
-
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
open=False,
|
128 |
-
):
|
129 |
-
with gr.Row():
|
130 |
-
running_eval_table = gr.components.Dataframe(
|
131 |
-
value=running_eval_queue_df,
|
132 |
-
headers=EVAL_COLS,
|
133 |
-
datatype=EVAL_TYPES,
|
134 |
-
row_count=5,
|
135 |
-
)
|
136 |
-
|
137 |
-
with gr.Accordion(
|
138 |
-
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
139 |
-
open=False,
|
140 |
-
):
|
141 |
-
with gr.Row():
|
142 |
-
pending_eval_table = gr.components.Dataframe(
|
143 |
-
value=pending_eval_queue_df,
|
144 |
-
headers=EVAL_COLS,
|
145 |
-
datatype=EVAL_TYPES,
|
146 |
-
row_count=5,
|
147 |
-
)
|
148 |
with gr.Row():
|
149 |
-
gr.Markdown(
|
150 |
-
|
|
|
151 |
with gr.Row():
|
152 |
with gr.Column():
|
153 |
model_name_textbox = gr.Textbox(label="Model name")
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
# demo.load(show_leaderboard, inputs=None, outputs=m1)
|
182 |
-
show_leaderboard(None, None)
|
183 |
-
|
184 |
|
185 |
scheduler = BackgroundScheduler()
|
186 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
187 |
scheduler.start()
|
188 |
|
189 |
-
|
190 |
-
# demo.launch()
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
import json
|
3 |
+
|
4 |
import gradio as gr
|
5 |
+
from huggingface_hub import snapshot_download
|
6 |
+
from gradio_leaderboard import Leaderboard, SelectColumns
|
7 |
import pandas as pd
|
8 |
from apscheduler.schedulers.background import BackgroundScheduler
|
9 |
+
from ttsds.benchmarks.benchmark import BenchmarkCategory
|
10 |
+
from ttsds import BenchmarkSuite
|
11 |
+
|
12 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN, TAGS
|
13 |
+
from src.texts import LLM_BENCHMARKS_TEXT, EVALUATION_QUEUE_TEXT
|
14 |
+
from src.css_html_js import custom_css
|
15 |
|
16 |
+
|
17 |
+
def filter_dfs(tags, lb):
|
18 |
+
global f_b_df, f_a_df
|
19 |
+
is_agg = False
|
20 |
+
if "Environment" in lb.columns:
|
21 |
+
is_agg = True
|
22 |
+
if is_agg:
|
23 |
+
lb = f_a_df.copy()
|
24 |
+
else:
|
25 |
+
lb = f_b_df.copy()
|
26 |
+
if tags and len(lb) > 0:
|
27 |
+
lb = lb[lb["Tags"].apply(lambda x: any(tag in x for tag in tags))]
|
28 |
+
return lb
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
|
31 |
def restart_space():
|
32 |
API.restart_space(repo_id=REPO_ID)
|
33 |
|
34 |
|
35 |
+
def submit_eval(model_name, model_tags, web_url, hf_url, code_url, paper_url, inference_details, file_path):
|
36 |
+
model_id = model_name.lower().replace(" ", "_")
|
37 |
+
# check if model already exists
|
38 |
+
if Path(f"{EVAL_REQUESTS_PATH}/{model_id}.json").exists():
|
39 |
+
return "Model already exists in the evaluation queue"
|
40 |
+
# check which urls are valid
|
41 |
+
if web_url and not web_url.startswith("http"):
|
42 |
+
return "Please enter a valid URL"
|
43 |
+
if hf_url and not hf_url.startswith("http"):
|
44 |
+
return "Please enter a valid URL"
|
45 |
+
if code_url and not code_url.startswith("http"):
|
46 |
+
return "Please enter a valid URL"
|
47 |
+
if paper_url and not paper_url.startswith("http"):
|
48 |
+
return "Please enter a valid URL"
|
49 |
+
# move file to correct location
|
50 |
+
if not file_path.endswith(".tar.gz"):
|
51 |
+
return "Please upload a .tar.gz file"
|
52 |
+
Path(file_path).rename(f"{EVAL_REQUESTS_PATH}/{model_id}.tar.gz")
|
53 |
+
# build display name - use web_url to link text if available, and emojis for the other urls
|
54 |
+
display_name = model_name
|
55 |
+
if web_url:
|
56 |
+
display_name = f"[{display_name}]({web_url}) "
|
57 |
+
if hf_url:
|
58 |
+
display_name += f"[🤗]({hf_url})"
|
59 |
+
if code_url:
|
60 |
+
display_name += f"[💻]({code_url})"
|
61 |
+
if paper_url:
|
62 |
+
display_name += f"[📄]({paper_url})"
|
63 |
+
request_obj = {
|
64 |
+
"model_name": model_name,
|
65 |
+
"display_name": display_name,
|
66 |
+
"model_tags": model_tags,
|
67 |
+
"web_url": web_url,
|
68 |
+
"hf_url": hf_url,
|
69 |
+
"code_url": code_url,
|
70 |
+
"paper_url": paper_url,
|
71 |
+
"inference_details": inference_details,
|
72 |
+
"status": "pending",
|
73 |
+
}
|
74 |
+
with open(f"{EVAL_REQUESTS_PATH}/{model_id}.json", "w") as f:
|
75 |
+
json.dump(request_obj, f)
|
76 |
+
API.upload_file(
|
77 |
+
path_or_fileobj=f"{EVAL_REQUESTS_PATH}/{model_id}.json",
|
78 |
+
path_in_repo=f"{model_id}.json",
|
79 |
+
repo_id=QUEUE_REPO,
|
80 |
+
repo_type="dataset",
|
81 |
+
commit_message=f"Add {model_name} to evaluation queue",
|
82 |
+
)
|
83 |
+
API.upload_file(
|
84 |
+
path_or_fileobj=f"{EVAL_REQUESTS_PATH}/{model_id}.tar.gz",
|
85 |
+
path_in_repo=f"{model_id}.tar.gz",
|
86 |
+
repo_id=QUEUE_REPO,
|
87 |
+
repo_type="dataset",
|
88 |
+
commit_message=f"Add {model_name} to evaluation queue",
|
89 |
+
)
|
90 |
+
return "Model submitted successfully 🎉"
|
91 |
+
|
92 |
+
|
93 |
### Space initialisation
|
94 |
try:
|
95 |
print(EVAL_REQUESTS_PATH)
|
|
|
117 |
restart_space()
|
118 |
|
119 |
|
120 |
+
results_df = pd.read_csv(EVAL_RESULTS_PATH + "/results.csv")
|
121 |
+
|
122 |
+
agg_df = BenchmarkSuite.aggregate_df(results_df)
|
123 |
+
agg_df = agg_df.pivot(index="dataset", columns="benchmark_category", values="score")
|
124 |
+
agg_df.rename(columns={"OVERALL": "General"}, inplace=True)
|
125 |
+
agg_df.columns = [x.capitalize() for x in agg_df.columns]
|
126 |
+
agg_df["Mean"] = agg_df.mean(axis=1)
|
127 |
+
# make sure mean is the first column
|
128 |
+
agg_df = agg_df[["Mean"] + [col for col in agg_df.columns if col != "Mean"]]
|
129 |
+
for col in agg_df.columns:
|
130 |
+
agg_df[col] = agg_df[col].apply(lambda x: round(x, 2))
|
131 |
+
agg_df["Tags"] = ""
|
132 |
+
agg_df.reset_index(inplace=True)
|
133 |
+
agg_df.rename(columns={"dataset": "Model"}, inplace=True)
|
134 |
+
agg_df.sort_values("Mean", ascending=False, inplace=True)
|
135 |
+
|
136 |
+
benchmark_df = results_df.pivot(index="dataset", columns="benchmark_name", values="score")
|
137 |
+
|
138 |
+
# get benchmark name order by category
|
139 |
+
benchmark_order = list(results_df.sort_values("benchmark_category")["benchmark_name"].unique())
|
140 |
+
benchmark_df = benchmark_df[benchmark_order]
|
141 |
+
benchmark_df = benchmark_df.reset_index()
|
142 |
+
benchmark_df.rename(columns={"dataset": "Model"}, inplace=True)
|
143 |
+
# set index
|
144 |
+
benchmark_df.set_index("Model", inplace=True)
|
145 |
+
benchmark_df["Mean"] = benchmark_df.mean(axis=1)
|
146 |
+
# make sure mean is the first column
|
147 |
+
benchmark_df = benchmark_df[["Mean"] + [col for col in benchmark_df.columns if col != "Mean"]]
|
148 |
+
# round all
|
149 |
+
for col in benchmark_df.columns:
|
150 |
+
benchmark_df[col] = benchmark_df[col].apply(lambda x: round(x, 2))
|
151 |
+
benchmark_df["Tags"] = ""
|
152 |
+
benchmark_df.reset_index(inplace=True)
|
153 |
+
benchmark_df.sort_values("Mean", ascending=False, inplace=True)
|
154 |
|
155 |
+
# get details for each model
|
156 |
+
model_detail_files = Path(EVAL_REQUESTS_PATH).glob("*.json")
|
157 |
+
model_details = {}
|
158 |
+
for model_detail_file in model_detail_files:
|
159 |
+
with open(model_detail_file) as f:
|
160 |
+
model_detail = json.load(f)
|
161 |
+
model_details[model_detail_file.stem] = model_detail
|
162 |
+
|
163 |
+
# replace .tar.gz
|
164 |
+
benchmark_df["Model"] = benchmark_df["Model"].apply(lambda x: x.replace(".tar.gz", ""))
|
165 |
+
agg_df["Model"] = agg_df["Model"].apply(lambda x: x.replace(".tar.gz", ""))
|
166 |
+
|
167 |
+
benchmark_df["Tags"] = benchmark_df["Model"].apply(lambda x: model_details.get(x, {}).get("model_tags", ""))
|
168 |
+
agg_df["Tags"] = agg_df["Model"].apply(lambda x: model_details.get(x, {}).get("model_tags", ""))
|
169 |
+
|
170 |
+
benchmark_df["Model"] = benchmark_df["Model"].apply(lambda x: model_details.get(x, {}).get("display_name", x))
|
171 |
+
agg_df["Model"] = agg_df["Model"].apply(lambda x: model_details.get(x, {}).get("display_name", x))
|
172 |
+
|
173 |
+
f_b_df = benchmark_df.copy()
|
174 |
+
f_a_df = agg_df.copy()
|
175 |
|
176 |
|
177 |
def init_leaderboard(dataframe):
|
178 |
if dataframe is None or dataframe.empty:
|
179 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
180 |
+
df_types = []
|
181 |
+
for col in dataframe.columns:
|
182 |
+
if col == "Model":
|
183 |
+
df_types.append("markdown")
|
184 |
+
elif col == "Tags":
|
185 |
+
df_types.append("markdown")
|
186 |
+
else:
|
187 |
+
df_types.append("number")
|
188 |
return Leaderboard(
|
189 |
value=dataframe,
|
|
|
190 |
select_columns=SelectColumns(
|
191 |
+
default_selection=list(dataframe.columns),
|
192 |
+
cant_deselect=["Model", "Mean"],
|
193 |
label="Select Columns to Display:",
|
194 |
),
|
195 |
+
search_columns=["Model", "Tags"],
|
196 |
+
filter_columns=[],
|
197 |
+
hide_columns=["Tags"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
interactive=False,
|
199 |
+
datatype=df_types,
|
200 |
)
|
201 |
|
202 |
|
203 |
+
app = gr.Blocks(css=custom_css, title="TTS Benchmark Leaderboard")
|
|
|
|
|
|
|
204 |
|
205 |
+
with app:
|
206 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
207 |
+
with gr.TabItem("🏅 TTSDB Scores", elem_id="llm-benchmark-tab-table", id=0):
|
208 |
+
tags = gr.Dropdown(
|
209 |
+
TAGS,
|
210 |
+
value=[],
|
211 |
+
multiselect=True,
|
212 |
+
label="Tags",
|
213 |
+
info="Select tags to filter the leaderboard. You can suggest new tags here: https://huggingface.co/spaces/ttsds/benchmark/discussions/1",
|
214 |
+
)
|
215 |
+
leaderboard = init_leaderboard(f_a_df)
|
216 |
+
tags.change(filter_dfs, [tags, leaderboard], [leaderboard])
|
217 |
+
with gr.TabItem("🏅 Individual Benchmarks", elem_id="llm-benchmark-tab-table", id=1):
|
218 |
+
tags = gr.Dropdown(
|
219 |
+
TAGS,
|
220 |
+
value=[],
|
221 |
+
multiselect=True,
|
222 |
+
label="Tags",
|
223 |
+
info="Select tags to filter the leaderboard",
|
224 |
+
)
|
225 |
+
leaderboard = init_leaderboard(f_b_df)
|
226 |
+
tags.change(filter_dfs, [tags, leaderboard], [leaderboard])
|
227 |
+
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
228 |
+
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
229 |
+
with gr.TabItem("🚀 Submit here!", elem_id="llm-benchmark-tab-table", id=3):
|
230 |
+
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
with gr.Row():
|
232 |
+
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
233 |
+
with gr.Row():
|
234 |
+
gr.Markdown("# ✉️✨ Submit a TTS dataset here!", elem_classes="markdown-text")
|
235 |
with gr.Row():
|
236 |
with gr.Column():
|
237 |
model_name_textbox = gr.Textbox(label="Model name")
|
238 |
+
model_tags_dropdown = gr.Dropdown(
|
239 |
+
label="Model tags",
|
240 |
+
choices=TAGS,
|
241 |
+
multiselect=True,
|
242 |
+
)
|
243 |
+
website_url_textbox = gr.Textbox(label="Website URL (optional)")
|
244 |
+
hf_url_textbox = gr.Textbox(label="Huggingface URL (optional)")
|
245 |
+
code_url_textbox = gr.Textbox(label="Code URL (optional)")
|
246 |
+
paper_url_textbox = gr.Textbox(label="Paper URL (optional)")
|
247 |
+
inference_details_textbox = gr.TextArea(label="Inference details (optional)")
|
248 |
+
file_input = gr.File(file_types=[".gz"], interactive=True, label=".tar.gz TTS dataset")
|
249 |
+
submit_button = gr.Button("Submit Eval")
|
250 |
+
submission_result = gr.Markdown()
|
251 |
+
submit_button.click(
|
252 |
+
submit_eval,
|
253 |
+
[
|
254 |
+
model_name_textbox,
|
255 |
+
model_tags_dropdown,
|
256 |
+
website_url_textbox,
|
257 |
+
hf_url_textbox,
|
258 |
+
code_url_textbox,
|
259 |
+
paper_url_textbox,
|
260 |
+
inference_details_textbox,
|
261 |
+
file_input,
|
262 |
+
],
|
263 |
+
submission_result,
|
264 |
+
)
|
|
|
|
|
|
|
265 |
|
266 |
scheduler = BackgroundScheduler()
|
267 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
268 |
scheduler.start()
|
269 |
|
270 |
+
app.queue(default_concurrency_limit=40).launch()
|
|
new/app.py
DELETED
@@ -1,270 +0,0 @@
|
|
1 |
-
from pathlib import Path
|
2 |
-
import json
|
3 |
-
|
4 |
-
import gradio as gr
|
5 |
-
from huggingface_hub import snapshot_download
|
6 |
-
from gradio_leaderboard import Leaderboard, SelectColumns
|
7 |
-
import pandas as pd
|
8 |
-
from apscheduler.schedulers.background import BackgroundScheduler
|
9 |
-
from ttsdb.benchmarks.benchmark import BenchmarkCategory
|
10 |
-
from ttsdb import BenchmarkSuite
|
11 |
-
|
12 |
-
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN, TAGS
|
13 |
-
from src.texts import LLM_BENCHMARKS_TEXT, EVALUATION_QUEUE_TEXT
|
14 |
-
from src.css_html_js import custom_css
|
15 |
-
|
16 |
-
|
17 |
-
def filter_dfs(tags, lb):
|
18 |
-
global f_b_df, f_a_df
|
19 |
-
is_agg = False
|
20 |
-
if "Environment" in lb.columns:
|
21 |
-
is_agg = True
|
22 |
-
if is_agg:
|
23 |
-
lb = f_a_df.copy()
|
24 |
-
else:
|
25 |
-
lb = f_b_df.copy()
|
26 |
-
if tags and len(lb) > 0:
|
27 |
-
lb = lb[lb["Tags"].apply(lambda x: any(tag in x for tag in tags))]
|
28 |
-
return lb
|
29 |
-
|
30 |
-
|
31 |
-
def restart_space():
|
32 |
-
API.restart_space(repo_id=REPO_ID)
|
33 |
-
|
34 |
-
|
35 |
-
def submit_eval(model_name, model_tags, web_url, hf_url, code_url, paper_url, inference_details, file_path):
|
36 |
-
model_id = model_name.lower().replace(" ", "_")
|
37 |
-
# check if model already exists
|
38 |
-
if Path(f"{EVAL_REQUESTS_PATH}/{model_id}.json").exists():
|
39 |
-
return "Model already exists in the evaluation queue"
|
40 |
-
# check which urls are valid
|
41 |
-
if web_url and not web_url.startswith("http"):
|
42 |
-
return "Please enter a valid URL"
|
43 |
-
if hf_url and not hf_url.startswith("http"):
|
44 |
-
return "Please enter a valid URL"
|
45 |
-
if code_url and not code_url.startswith("http"):
|
46 |
-
return "Please enter a valid URL"
|
47 |
-
if paper_url and not paper_url.startswith("http"):
|
48 |
-
return "Please enter a valid URL"
|
49 |
-
# move file to correct location
|
50 |
-
if not file_path.endswith(".tar.gz"):
|
51 |
-
return "Please upload a .tar.gz file"
|
52 |
-
Path(file_path).rename(f"{EVAL_REQUESTS_PATH}/{model_id}.tar.gz")
|
53 |
-
# build display name - use web_url to link text if available, and emojis for the other urls
|
54 |
-
display_name = model_name
|
55 |
-
if web_url:
|
56 |
-
display_name = f"[{display_name}]({web_url}) "
|
57 |
-
if hf_url:
|
58 |
-
display_name += f"[🤗]({hf_url})"
|
59 |
-
if code_url:
|
60 |
-
display_name += f"[💻]({code_url})"
|
61 |
-
if paper_url:
|
62 |
-
display_name += f"[📄]({paper_url})"
|
63 |
-
request_obj = {
|
64 |
-
"model_name": model_name,
|
65 |
-
"display_name": display_name,
|
66 |
-
"model_tags": model_tags,
|
67 |
-
"web_url": web_url,
|
68 |
-
"hf_url": hf_url,
|
69 |
-
"code_url": code_url,
|
70 |
-
"paper_url": paper_url,
|
71 |
-
"inference_details": inference_details,
|
72 |
-
"status": "pending",
|
73 |
-
}
|
74 |
-
with open(f"{EVAL_REQUESTS_PATH}/{model_id}.json", "w") as f:
|
75 |
-
json.dump(request_obj, f)
|
76 |
-
API.upload_file(
|
77 |
-
path_or_fileobj=f"{EVAL_REQUESTS_PATH}/{model_id}.json",
|
78 |
-
path_in_repo=f"{model_id}.json",
|
79 |
-
repo_id=QUEUE_REPO,
|
80 |
-
repo_type="dataset",
|
81 |
-
commit_message=f"Add {model_name} to evaluation queue",
|
82 |
-
)
|
83 |
-
API.upload_file(
|
84 |
-
path_or_fileobj=f"{EVAL_REQUESTS_PATH}/{model_id}.tar.gz",
|
85 |
-
path_in_repo=f"{model_id}.tar.gz",
|
86 |
-
repo_id=QUEUE_REPO,
|
87 |
-
repo_type="dataset",
|
88 |
-
commit_message=f"Add {model_name} to evaluation queue",
|
89 |
-
)
|
90 |
-
return "Model submitted successfully 🎉"
|
91 |
-
|
92 |
-
|
93 |
-
### Space initialisation
|
94 |
-
try:
|
95 |
-
print(EVAL_REQUESTS_PATH)
|
96 |
-
snapshot_download(
|
97 |
-
repo_id=QUEUE_REPO,
|
98 |
-
local_dir=EVAL_REQUESTS_PATH,
|
99 |
-
repo_type="dataset",
|
100 |
-
tqdm_class=None,
|
101 |
-
etag_timeout=30,
|
102 |
-
token=TOKEN,
|
103 |
-
)
|
104 |
-
except Exception:
|
105 |
-
restart_space()
|
106 |
-
try:
|
107 |
-
print(EVAL_RESULTS_PATH)
|
108 |
-
snapshot_download(
|
109 |
-
repo_id=RESULTS_REPO,
|
110 |
-
local_dir=EVAL_RESULTS_PATH,
|
111 |
-
repo_type="dataset",
|
112 |
-
tqdm_class=None,
|
113 |
-
etag_timeout=30,
|
114 |
-
token=TOKEN,
|
115 |
-
)
|
116 |
-
except Exception:
|
117 |
-
restart_space()
|
118 |
-
|
119 |
-
|
120 |
-
results_df = pd.read_csv(EVAL_RESULTS_PATH + "/results.csv")
|
121 |
-
|
122 |
-
agg_df = BenchmarkSuite.aggregate_df(results_df)
|
123 |
-
agg_df = agg_df.pivot(index="dataset", columns="benchmark_category", values="score")
|
124 |
-
agg_df.rename(columns={"OVERALL": "General"}, inplace=True)
|
125 |
-
agg_df.columns = [x.capitalize() for x in agg_df.columns]
|
126 |
-
agg_df["Mean"] = agg_df.mean(axis=1)
|
127 |
-
# make sure mean is the first column
|
128 |
-
agg_df = agg_df[["Mean"] + [col for col in agg_df.columns if col != "Mean"]]
|
129 |
-
for col in agg_df.columns:
|
130 |
-
agg_df[col] = agg_df[col].apply(lambda x: round(x, 2))
|
131 |
-
agg_df["Tags"] = ""
|
132 |
-
agg_df.reset_index(inplace=True)
|
133 |
-
agg_df.rename(columns={"dataset": "Model"}, inplace=True)
|
134 |
-
agg_df.sort_values("Mean", ascending=False, inplace=True)
|
135 |
-
|
136 |
-
benchmark_df = results_df.pivot(index="dataset", columns="benchmark_name", values="score")
|
137 |
-
|
138 |
-
# get benchmark name order by category
|
139 |
-
benchmark_order = list(results_df.sort_values("benchmark_category")["benchmark_name"].unique())
|
140 |
-
benchmark_df = benchmark_df[benchmark_order]
|
141 |
-
benchmark_df = benchmark_df.reset_index()
|
142 |
-
benchmark_df.rename(columns={"dataset": "Model"}, inplace=True)
|
143 |
-
# set index
|
144 |
-
benchmark_df.set_index("Model", inplace=True)
|
145 |
-
benchmark_df["Mean"] = benchmark_df.mean(axis=1)
|
146 |
-
# make sure mean is the first column
|
147 |
-
benchmark_df = benchmark_df[["Mean"] + [col for col in benchmark_df.columns if col != "Mean"]]
|
148 |
-
# round all
|
149 |
-
for col in benchmark_df.columns:
|
150 |
-
benchmark_df[col] = benchmark_df[col].apply(lambda x: round(x, 2))
|
151 |
-
benchmark_df["Tags"] = ""
|
152 |
-
benchmark_df.reset_index(inplace=True)
|
153 |
-
benchmark_df.sort_values("Mean", ascending=False, inplace=True)
|
154 |
-
|
155 |
-
# get details for each model
|
156 |
-
model_detail_files = Path(EVAL_REQUESTS_PATH).glob("*.json")
|
157 |
-
model_details = {}
|
158 |
-
for model_detail_file in model_detail_files:
|
159 |
-
with open(model_detail_file) as f:
|
160 |
-
model_detail = json.load(f)
|
161 |
-
model_details[model_detail_file.stem] = model_detail
|
162 |
-
|
163 |
-
# replace .tar.gz
|
164 |
-
benchmark_df["Model"] = benchmark_df["Model"].apply(lambda x: x.replace(".tar.gz", ""))
|
165 |
-
agg_df["Model"] = agg_df["Model"].apply(lambda x: x.replace(".tar.gz", ""))
|
166 |
-
|
167 |
-
benchmark_df["Tags"] = benchmark_df["Model"].apply(lambda x: model_details.get(x, {}).get("model_tags", ""))
|
168 |
-
agg_df["Tags"] = agg_df["Model"].apply(lambda x: model_details.get(x, {}).get("model_tags", ""))
|
169 |
-
|
170 |
-
benchmark_df["Model"] = benchmark_df["Model"].apply(lambda x: model_details.get(x, {}).get("display_name", x))
|
171 |
-
agg_df["Model"] = agg_df["Model"].apply(lambda x: model_details.get(x, {}).get("display_name", x))
|
172 |
-
|
173 |
-
f_b_df = benchmark_df.copy()
|
174 |
-
f_a_df = agg_df.copy()
|
175 |
-
|
176 |
-
|
177 |
-
def init_leaderboard(dataframe):
|
178 |
-
if dataframe is None or dataframe.empty:
|
179 |
-
raise ValueError("Leaderboard DataFrame is empty or None.")
|
180 |
-
df_types = []
|
181 |
-
for col in dataframe.columns:
|
182 |
-
if col == "Model":
|
183 |
-
df_types.append("markdown")
|
184 |
-
elif col == "Tags":
|
185 |
-
df_types.append("markdown")
|
186 |
-
else:
|
187 |
-
df_types.append("number")
|
188 |
-
return Leaderboard(
|
189 |
-
value=dataframe,
|
190 |
-
select_columns=SelectColumns(
|
191 |
-
default_selection=list(dataframe.columns),
|
192 |
-
cant_deselect=["Model", "Mean"],
|
193 |
-
label="Select Columns to Display:",
|
194 |
-
),
|
195 |
-
search_columns=["Model", "Tags"],
|
196 |
-
filter_columns=[],
|
197 |
-
hide_columns=["Tags"],
|
198 |
-
interactive=False,
|
199 |
-
datatype=df_types,
|
200 |
-
)
|
201 |
-
|
202 |
-
|
203 |
-
app = gr.Blocks(css=custom_css, title="TTS Benchmark Leaderboard")
|
204 |
-
|
205 |
-
with app:
|
206 |
-
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
207 |
-
with gr.TabItem("🏅 TTSDB Scores", elem_id="llm-benchmark-tab-table", id=0):
|
208 |
-
tags = gr.Dropdown(
|
209 |
-
TAGS,
|
210 |
-
value=[],
|
211 |
-
multiselect=True,
|
212 |
-
label="Tags",
|
213 |
-
info="Select tags to filter the leaderboard. You can suggest new tags here: https://huggingface.co/spaces/ttsds/benchmark/discussions/1",
|
214 |
-
)
|
215 |
-
leaderboard = init_leaderboard(f_a_df)
|
216 |
-
tags.change(filter_dfs, [tags, leaderboard], [leaderboard])
|
217 |
-
with gr.TabItem("🏅 Individual Benchmarks", elem_id="llm-benchmark-tab-table", id=1):
|
218 |
-
tags = gr.Dropdown(
|
219 |
-
TAGS,
|
220 |
-
value=[],
|
221 |
-
multiselect=True,
|
222 |
-
label="Tags",
|
223 |
-
info="Select tags to filter the leaderboard",
|
224 |
-
)
|
225 |
-
leaderboard = init_leaderboard(f_b_df)
|
226 |
-
tags.change(filter_dfs, [tags, leaderboard], [leaderboard])
|
227 |
-
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
228 |
-
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
229 |
-
with gr.TabItem("🚀 Submit here!", elem_id="llm-benchmark-tab-table", id=3):
|
230 |
-
with gr.Column():
|
231 |
-
with gr.Row():
|
232 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
233 |
-
with gr.Row():
|
234 |
-
gr.Markdown("# ✉️✨ Submit a TTS dataset here!", elem_classes="markdown-text")
|
235 |
-
with gr.Row():
|
236 |
-
with gr.Column():
|
237 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
238 |
-
model_tags_dropdown = gr.Dropdown(
|
239 |
-
label="Model tags",
|
240 |
-
choices=TAGS,
|
241 |
-
multiselect=True,
|
242 |
-
)
|
243 |
-
website_url_textbox = gr.Textbox(label="Website URL (optional)")
|
244 |
-
hf_url_textbox = gr.Textbox(label="Huggingface URL (optional)")
|
245 |
-
code_url_textbox = gr.Textbox(label="Code URL (optional)")
|
246 |
-
paper_url_textbox = gr.Textbox(label="Paper URL (optional)")
|
247 |
-
inference_details_textbox = gr.TextArea(label="Inference details (optional)")
|
248 |
-
file_input = gr.File(file_types=[".gz"], interactive=True, label=".tar.gz TTS dataset")
|
249 |
-
submit_button = gr.Button("Submit Eval")
|
250 |
-
submission_result = gr.Markdown()
|
251 |
-
submit_button.click(
|
252 |
-
submit_eval,
|
253 |
-
[
|
254 |
-
model_name_textbox,
|
255 |
-
model_tags_dropdown,
|
256 |
-
website_url_textbox,
|
257 |
-
hf_url_textbox,
|
258 |
-
code_url_textbox,
|
259 |
-
paper_url_textbox,
|
260 |
-
inference_details_textbox,
|
261 |
-
file_input,
|
262 |
-
],
|
263 |
-
submission_result,
|
264 |
-
)
|
265 |
-
|
266 |
-
scheduler = BackgroundScheduler()
|
267 |
-
scheduler.add_job(restart_space, "interval", seconds=1800)
|
268 |
-
scheduler.start()
|
269 |
-
|
270 |
-
app.queue(default_concurrency_limit=40).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
new/requirements.txt
DELETED
@@ -1,17 +0,0 @@
|
|
1 |
-
APScheduler
|
2 |
-
black
|
3 |
-
datasets
|
4 |
-
gradio
|
5 |
-
gradio[oauth]
|
6 |
-
gradio_leaderboard==0.0.9
|
7 |
-
gradio_client
|
8 |
-
huggingface-hub>=0.18.0
|
9 |
-
matplotlib
|
10 |
-
numpy
|
11 |
-
pandas
|
12 |
-
python-dateutil
|
13 |
-
tqdm
|
14 |
-
transformers
|
15 |
-
tokenizers>=0.15.0
|
16 |
-
sentencepiece
|
17 |
-
markdown
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
new/src/envs.py
DELETED
@@ -1,38 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
from huggingface_hub import HfApi
|
4 |
-
|
5 |
-
# Info to change for your repository
|
6 |
-
# ----------------------------------
|
7 |
-
TOKEN = os.environ.get("TOKEN") # A read/write token for your org
|
8 |
-
|
9 |
-
OWNER = "ttsds" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
10 |
-
# ----------------------------------
|
11 |
-
|
12 |
-
REPO_ID = f"{OWNER}/leaderboard"
|
13 |
-
QUEUE_REPO = f"{OWNER}/requests"
|
14 |
-
RESULTS_REPO = f"{OWNER}/results"
|
15 |
-
|
16 |
-
# If you setup a cache later, just change HF_HOME
|
17 |
-
CACHE_PATH = os.getenv("HF_HOME", ".")
|
18 |
-
|
19 |
-
# Local caches
|
20 |
-
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
21 |
-
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
22 |
-
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
|
23 |
-
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
24 |
-
|
25 |
-
API = HfApi(token=TOKEN)
|
26 |
-
|
27 |
-
TAGS = [
|
28 |
-
"Normalizing Flow",
|
29 |
-
"Reference-based (Speaker)",
|
30 |
-
"Prompt-based (Speaker)",
|
31 |
-
"Prosodic Correlates",
|
32 |
-
"Adversarial",
|
33 |
-
"Diffusion",
|
34 |
-
"Audio Tokens",
|
35 |
-
"Autoregressive",
|
36 |
-
"Non-autoregressive",
|
37 |
-
"Pretrained Text Encoder",
|
38 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -13,4 +13,5 @@ python-dateutil
|
|
13 |
tqdm
|
14 |
transformers
|
15 |
tokenizers>=0.15.0
|
16 |
-
sentencepiece
|
|
|
|
13 |
tqdm
|
14 |
transformers
|
15 |
tokenizers>=0.15.0
|
16 |
+
sentencepiece
|
17 |
+
ttsds
|
src/about.py
DELETED
@@ -1,60 +0,0 @@
|
|
1 |
-
from dataclasses import dataclass
|
2 |
-
from enum import Enum
|
3 |
-
|
4 |
-
|
5 |
-
@dataclass
|
6 |
-
class Task:
|
7 |
-
benchmark: str
|
8 |
-
metric: str
|
9 |
-
col_name: str
|
10 |
-
category: str
|
11 |
-
|
12 |
-
|
13 |
-
# Select your tasks here
|
14 |
-
# ---------------------------------------------------
|
15 |
-
class Tasks(Enum):
|
16 |
-
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
17 |
-
task0 = Task("anli_r1", "acc", "ANLI", "")
|
18 |
-
task1 = Task("logiqa", "acc_norm", "LogiQA", "")
|
19 |
-
|
20 |
-
|
21 |
-
NUM_FEWSHOT = 0 # Change with your few shot
|
22 |
-
# ---------------------------------------------------
|
23 |
-
|
24 |
-
|
25 |
-
# Your leaderboard name
|
26 |
-
TITLE = """<h1 align="center" id="space-title">Demo leaderboard</h1>"""
|
27 |
-
|
28 |
-
# What does your leaderboard evaluate?
|
29 |
-
INTRODUCTION_TEXT = """
|
30 |
-
Intro text
|
31 |
-
"""
|
32 |
-
|
33 |
-
# Which evaluations are you running? how can people reproduce what you have?
|
34 |
-
LLM_BENCHMARKS_TEXT = f"""
|
35 |
-
## How it works
|
36 |
-
|
37 |
-
## Reproducibility
|
38 |
-
To reproduce our results, check out our repository [here](https://github.com/ttsds/ttsds).
|
39 |
-
|
40 |
-
"""
|
41 |
-
|
42 |
-
EVALUATION_QUEUE_TEXT = """
|
43 |
-
## How to submit a TTS model to the leaderboard
|
44 |
-
|
45 |
-
### 1) download the evaluation dataset
|
46 |
-
The evaluation dataset consists of wav / text pairs.
|
47 |
-
You can download it [here](https://huggingface.co/ttsds/eval).
|
48 |
-
|
49 |
-
### 2) create your TTS dataset
|
50 |
-
Create a dataset with your TTS model and the evaluation dataset.
|
51 |
-
Use the wav files as speaker reference and the text as the prompt.
|
52 |
-
Create a .tar.gz file with the dataset, and make sure to inlcude .wav files and .txt files.
|
53 |
-
|
54 |
-
### 3) submit your TTS dataset
|
55 |
-
Submit your dataset below.
|
56 |
-
"""
|
57 |
-
|
58 |
-
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
59 |
-
CITATION_BUTTON_TEXT = r"""
|
60 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{new/src → src}/css_html_js.py
RENAMED
File without changes
|
src/display/css_html_js.py
DELETED
@@ -1,105 +0,0 @@
|
|
1 |
-
custom_css = """
|
2 |
-
|
3 |
-
.markdown-text {
|
4 |
-
font-size: 16px !important;
|
5 |
-
}
|
6 |
-
|
7 |
-
#models-to-add-text {
|
8 |
-
font-size: 18px !important;
|
9 |
-
}
|
10 |
-
|
11 |
-
#citation-button span {
|
12 |
-
font-size: 16px !important;
|
13 |
-
}
|
14 |
-
|
15 |
-
#citation-button textarea {
|
16 |
-
font-size: 16px !important;
|
17 |
-
}
|
18 |
-
|
19 |
-
#citation-button > label > button {
|
20 |
-
margin: 6px;
|
21 |
-
transform: scale(1.3);
|
22 |
-
}
|
23 |
-
|
24 |
-
#leaderboard-table {
|
25 |
-
margin-top: 15px
|
26 |
-
}
|
27 |
-
|
28 |
-
#leaderboard-table-lite {
|
29 |
-
margin-top: 15px
|
30 |
-
}
|
31 |
-
|
32 |
-
#search-bar-table-box > div:first-child {
|
33 |
-
background: none;
|
34 |
-
border: none;
|
35 |
-
}
|
36 |
-
|
37 |
-
#search-bar {
|
38 |
-
padding: 0px;
|
39 |
-
}
|
40 |
-
|
41 |
-
/* Limit the width of the first AutoEvalColumn so that names don't expand too much */
|
42 |
-
table td:first-child,
|
43 |
-
table th:first-child {
|
44 |
-
max-width: 400px;
|
45 |
-
overflow: auto;
|
46 |
-
white-space: nowrap;
|
47 |
-
}
|
48 |
-
|
49 |
-
.tab-buttons button {
|
50 |
-
font-size: 20px;
|
51 |
-
}
|
52 |
-
|
53 |
-
#scale-logo {
|
54 |
-
border-style: none !important;
|
55 |
-
box-shadow: none;
|
56 |
-
display: block;
|
57 |
-
margin-left: auto;
|
58 |
-
margin-right: auto;
|
59 |
-
max-width: 600px;
|
60 |
-
}
|
61 |
-
|
62 |
-
#scale-logo .download {
|
63 |
-
display: none;
|
64 |
-
}
|
65 |
-
#filter_type{
|
66 |
-
border: 0;
|
67 |
-
padding-left: 0;
|
68 |
-
padding-top: 0;
|
69 |
-
}
|
70 |
-
#filter_type label {
|
71 |
-
display: flex;
|
72 |
-
}
|
73 |
-
#filter_type label > span{
|
74 |
-
margin-top: var(--spacing-lg);
|
75 |
-
margin-right: 0.5em;
|
76 |
-
}
|
77 |
-
#filter_type label > .wrap{
|
78 |
-
width: 103px;
|
79 |
-
}
|
80 |
-
#filter_type label > .wrap .wrap-inner{
|
81 |
-
padding: 2px;
|
82 |
-
}
|
83 |
-
#filter_type label > .wrap .wrap-inner input{
|
84 |
-
width: 1px
|
85 |
-
}
|
86 |
-
#filter-columns-type{
|
87 |
-
border:0;
|
88 |
-
padding:0.5;
|
89 |
-
}
|
90 |
-
#filter-columns-size{
|
91 |
-
border:0;
|
92 |
-
padding:0.5;
|
93 |
-
}
|
94 |
-
#box-filter > .form{
|
95 |
-
border: 0
|
96 |
-
}
|
97 |
-
"""
|
98 |
-
|
99 |
-
get_window_url_params = """
|
100 |
-
function(url_params) {
|
101 |
-
const params = new URLSearchParams(window.location.search);
|
102 |
-
url_params = Object.fromEntries(params);
|
103 |
-
return url_params;
|
104 |
-
}
|
105 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/display/formatting.py
DELETED
@@ -1,27 +0,0 @@
|
|
1 |
-
def model_hyperlink(link, model_name):
|
2 |
-
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
3 |
-
|
4 |
-
|
5 |
-
def make_clickable_model(model_name):
|
6 |
-
link = f"https://huggingface.co/{model_name}"
|
7 |
-
return model_hyperlink(link, model_name)
|
8 |
-
|
9 |
-
|
10 |
-
def styled_error(error):
|
11 |
-
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
|
12 |
-
|
13 |
-
|
14 |
-
def styled_warning(warn):
|
15 |
-
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
|
16 |
-
|
17 |
-
|
18 |
-
def styled_message(message):
|
19 |
-
return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
|
20 |
-
|
21 |
-
|
22 |
-
def has_no_nan_values(df, columns):
|
23 |
-
return df[columns].notna().all(axis=1)
|
24 |
-
|
25 |
-
|
26 |
-
def has_nan_values(df, columns):
|
27 |
-
return df[columns].isna().any(axis=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/display/utils.py
DELETED
@@ -1,58 +0,0 @@
|
|
1 |
-
from dataclasses import dataclass, make_dataclass
|
2 |
-
from enum import Enum
|
3 |
-
|
4 |
-
import pandas as pd
|
5 |
-
|
6 |
-
from src.about import Tasks
|
7 |
-
|
8 |
-
|
9 |
-
def fields(raw_class):
|
10 |
-
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
11 |
-
|
12 |
-
|
13 |
-
# These classes are for user facing column names,
|
14 |
-
# to avoid having to change them all around the code
|
15 |
-
# when a modif is needed
|
16 |
-
@dataclass
|
17 |
-
class ColumnContent:
|
18 |
-
name: str
|
19 |
-
type: str
|
20 |
-
displayed_by_default: bool
|
21 |
-
hidden: bool = False
|
22 |
-
never_hidden: bool = False
|
23 |
-
|
24 |
-
|
25 |
-
@dataclass(frozen=True)
|
26 |
-
class AutoEvalColumn:
|
27 |
-
model = ColumnContent("model", "markdown", True, never_hidden=True)
|
28 |
-
average = ColumnContent("average", "number", True)
|
29 |
-
general = ColumnContent("general", "number", True)
|
30 |
-
speaker = ColumnContent("speaker", "number", True)
|
31 |
-
prosody = ColumnContent("prosody", "number", True)
|
32 |
-
intelligibility = ColumnContent("intelligibility", "number", True)
|
33 |
-
environment = ColumnContent("environment", "number", True)
|
34 |
-
tags = ColumnContent("tags", "str", False)
|
35 |
-
|
36 |
-
|
37 |
-
## For the queue columns in the submission tab
|
38 |
-
@dataclass(frozen=True)
|
39 |
-
class EvalQueueColumn: # Queue column
|
40 |
-
model = ColumnContent("model", "markdown", True)
|
41 |
-
status = ColumnContent("status", "str", True)
|
42 |
-
|
43 |
-
|
44 |
-
## All the model information that we might need
|
45 |
-
@dataclass
|
46 |
-
class ModelDetails:
|
47 |
-
name: str
|
48 |
-
display_name: str = ""
|
49 |
-
symbol: str = "" # emoji
|
50 |
-
|
51 |
-
|
52 |
-
# Column selection
|
53 |
-
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
54 |
-
|
55 |
-
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
56 |
-
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
57 |
-
|
58 |
-
BENCHMARK_COLS = ["general", "speaker", "prosody", "intelligibility", "environment"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/envs.py
CHANGED
@@ -23,3 +23,16 @@ EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
|
|
23 |
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
24 |
|
25 |
API = HfApi(token=TOKEN)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
24 |
|
25 |
API = HfApi(token=TOKEN)
|
26 |
+
|
27 |
+
TAGS = [
|
28 |
+
"Normalizing Flow",
|
29 |
+
"Reference-based (Speaker)",
|
30 |
+
"Prompt-based (Speaker)",
|
31 |
+
"Prosodic Correlates",
|
32 |
+
"Adversarial",
|
33 |
+
"Diffusion",
|
34 |
+
"Audio Tokens",
|
35 |
+
"Autoregressive",
|
36 |
+
"Non-autoregressive",
|
37 |
+
"Pretrained Text Encoder",
|
38 |
+
]
|
src/leaderboard/read_evals.py
DELETED
@@ -1,129 +0,0 @@
|
|
1 |
-
import glob
|
2 |
-
import json
|
3 |
-
import math
|
4 |
-
import os
|
5 |
-
from dataclasses import dataclass
|
6 |
-
|
7 |
-
import dateutil
|
8 |
-
import numpy as np
|
9 |
-
|
10 |
-
from src.display.formatting import make_clickable_model
|
11 |
-
from src.display.utils import AutoEvalColumn, Tasks
|
12 |
-
|
13 |
-
|
14 |
-
@dataclass
|
15 |
-
class EvalResult:
|
16 |
-
"""Represents one full evaluation. Built from a combination of the result and request file for a given run."""
|
17 |
-
|
18 |
-
model_id: str
|
19 |
-
results: dict
|
20 |
-
date: str = "" # submission date of request file
|
21 |
-
|
22 |
-
@classmethod
|
23 |
-
def init_from_json_file(self, json_filepath):
|
24 |
-
"""Inits the result from the specific model result file"""
|
25 |
-
with open(json_filepath) as fp:
|
26 |
-
data = json.load(fp)
|
27 |
-
|
28 |
-
config = data.get("config")
|
29 |
-
|
30 |
-
# Extract model info
|
31 |
-
model = config.get("model_name", "")
|
32 |
-
|
33 |
-
# Extract results available in this file (some results are split in several files)
|
34 |
-
results = {}
|
35 |
-
for task in Tasks:
|
36 |
-
task = task.value
|
37 |
-
|
38 |
-
# We average all scores of a given metric (not all metrics are present in all files)
|
39 |
-
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
|
40 |
-
if accs.size == 0 or any([acc is None for acc in accs]):
|
41 |
-
continue
|
42 |
-
|
43 |
-
mean_acc = np.mean(accs) * 100.0
|
44 |
-
results[task.benchmark] = mean_acc
|
45 |
-
|
46 |
-
return self(
|
47 |
-
model_id=model,
|
48 |
-
results=results,
|
49 |
-
)
|
50 |
-
|
51 |
-
def update_with_request_file(self, requests_path):
|
52 |
-
"""Finds the relevant request file for the current model and updates info with it"""
|
53 |
-
request_file = get_request_file_for_model(requests_path, self.full_model)
|
54 |
-
|
55 |
-
try:
|
56 |
-
with open(request_file, "r") as f:
|
57 |
-
request = json.load(f)
|
58 |
-
self.model_id = request.get("model", self.model_id)
|
59 |
-
self.results
|
60 |
-
except Exception:
|
61 |
-
print(
|
62 |
-
f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}"
|
63 |
-
)
|
64 |
-
|
65 |
-
def to_dict(self):
|
66 |
-
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
67 |
-
data_dict = {
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
def get_request_file_for_model(requests_path, model_name):
|
72 |
-
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
73 |
-
request_files = os.path.join(
|
74 |
-
requests_path,
|
75 |
-
f"{model_name}_eval_request_*.json",
|
76 |
-
)
|
77 |
-
request_files = glob.glob(request_files)
|
78 |
-
|
79 |
-
# Select correct request file
|
80 |
-
request_file = ""
|
81 |
-
request_files = sorted(request_files, reverse=True)
|
82 |
-
for tmp_request_file in request_files:
|
83 |
-
with open(tmp_request_file, "r") as f:
|
84 |
-
req_content = json.load(f)
|
85 |
-
if req_content["status"] in ["FINISHED"]:
|
86 |
-
request_file = tmp_request_file
|
87 |
-
return request_file
|
88 |
-
|
89 |
-
|
90 |
-
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
|
91 |
-
"""From the path of the results folder root, extract all needed info for results"""
|
92 |
-
model_result_filepaths = []
|
93 |
-
|
94 |
-
for root, _, files in os.walk(results_path):
|
95 |
-
# We should only have json files in model results
|
96 |
-
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
97 |
-
continue
|
98 |
-
|
99 |
-
# Sort the files by date
|
100 |
-
try:
|
101 |
-
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
|
102 |
-
except dateutil.parser._parser.ParserError:
|
103 |
-
files = [files[-1]]
|
104 |
-
|
105 |
-
for file in files:
|
106 |
-
model_result_filepaths.append(os.path.join(root, file))
|
107 |
-
|
108 |
-
eval_results = {}
|
109 |
-
for model_result_filepath in model_result_filepaths:
|
110 |
-
# Creation of result
|
111 |
-
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
112 |
-
eval_result.update_with_request_file(requests_path)
|
113 |
-
|
114 |
-
# Store results of same eval together
|
115 |
-
eval_name = eval_result.eval_name
|
116 |
-
if eval_name in eval_results.keys():
|
117 |
-
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
118 |
-
else:
|
119 |
-
eval_results[eval_name] = eval_result
|
120 |
-
|
121 |
-
results = []
|
122 |
-
for v in eval_results.values():
|
123 |
-
try:
|
124 |
-
v.to_dict() # we test if the dict version is complete
|
125 |
-
results.append(v)
|
126 |
-
except KeyError: # not all eval values present
|
127 |
-
continue
|
128 |
-
|
129 |
-
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/populate.py
DELETED
@@ -1,58 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
|
4 |
-
import pandas as pd
|
5 |
-
|
6 |
-
from src.display.formatting import has_no_nan_values, make_clickable_model
|
7 |
-
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
8 |
-
from src.leaderboard.read_evals import get_raw_eval_results
|
9 |
-
|
10 |
-
|
11 |
-
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
12 |
-
"""Creates a dataframe from all the individual experiment results"""
|
13 |
-
raw_data = get_raw_eval_results(results_path, requests_path)
|
14 |
-
all_data_json = [v.to_dict() for v in raw_data]
|
15 |
-
|
16 |
-
df = pd.DataFrame.from_records(all_data_json)
|
17 |
-
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
18 |
-
df = df[cols].round(decimals=2)
|
19 |
-
|
20 |
-
# filter out if any of the benchmarks have not been produced
|
21 |
-
df = df[has_no_nan_values(df, benchmark_cols)]
|
22 |
-
return df
|
23 |
-
|
24 |
-
|
25 |
-
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
26 |
-
"""Creates the different dataframes for the evaluation queues requestes"""
|
27 |
-
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
28 |
-
all_evals = []
|
29 |
-
|
30 |
-
for entry in entries:
|
31 |
-
if ".json" in entry:
|
32 |
-
file_path = os.path.join(save_path, entry)
|
33 |
-
with open(file_path) as fp:
|
34 |
-
data = json.load(fp)
|
35 |
-
|
36 |
-
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
37 |
-
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
38 |
-
|
39 |
-
all_evals.append(data)
|
40 |
-
elif ".md" not in entry:
|
41 |
-
# this is a folder
|
42 |
-
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
|
43 |
-
for sub_entry in sub_entries:
|
44 |
-
file_path = os.path.join(save_path, entry, sub_entry)
|
45 |
-
with open(file_path) as fp:
|
46 |
-
data = json.load(fp)
|
47 |
-
|
48 |
-
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
49 |
-
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
50 |
-
all_evals.append(data)
|
51 |
-
|
52 |
-
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
53 |
-
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
54 |
-
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
|
55 |
-
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
56 |
-
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
57 |
-
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
58 |
-
return df_finished[cols], df_running[cols], df_pending[cols]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/submission/check_validity.py
DELETED
@@ -1,36 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
import re
|
4 |
-
from collections import defaultdict
|
5 |
-
from datetime import datetime, timedelta, timezone
|
6 |
-
|
7 |
-
import huggingface_hub
|
8 |
-
from huggingface_hub import ModelCard
|
9 |
-
from huggingface_hub.hf_api import ModelInfo
|
10 |
-
from transformers import AutoConfig
|
11 |
-
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
12 |
-
|
13 |
-
|
14 |
-
def already_submitted_models(requested_models_dir: str) -> set[str]:
|
15 |
-
"""Gather a list of already submitted models to avoid duplicates"""
|
16 |
-
depth = 1
|
17 |
-
file_names = []
|
18 |
-
users_to_submission_dates = defaultdict(list)
|
19 |
-
|
20 |
-
for root, _, files in os.walk(requested_models_dir):
|
21 |
-
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
|
22 |
-
if current_depth == depth:
|
23 |
-
for file in files:
|
24 |
-
if not file.endswith(".json"):
|
25 |
-
continue
|
26 |
-
with open(os.path.join(root, file), "r") as f:
|
27 |
-
info = json.load(f)
|
28 |
-
file_names.append(f"{info['model']}_{info['revision']}")
|
29 |
-
|
30 |
-
# Select organisation
|
31 |
-
if info["model"].count("/") == 0 or "submitted_time" not in info:
|
32 |
-
continue
|
33 |
-
organisation, _ = info["model"].split("/")
|
34 |
-
users_to_submission_dates[organisation].append(info["submitted_time"])
|
35 |
-
|
36 |
-
return set(file_names), users_to_submission_dates
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/submission/submit.py
DELETED
@@ -1,69 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
from datetime import datetime, timezone
|
4 |
-
from typing import List
|
5 |
-
|
6 |
-
from src.display.formatting import styled_error, styled_message, styled_warning
|
7 |
-
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
|
8 |
-
from src.submission.check_validity import already_submitted_models
|
9 |
-
|
10 |
-
|
11 |
-
REQUESTED_MODELS = None
|
12 |
-
USERS_TO_SUBMISSION_DATES = None
|
13 |
-
|
14 |
-
|
15 |
-
def add_new_eval(
|
16 |
-
model: str,
|
17 |
-
tags: List[str],
|
18 |
-
):
|
19 |
-
global REQUESTED_MODELS
|
20 |
-
global USERS_TO_SUBMISSION_DATES
|
21 |
-
if not REQUESTED_MODELS:
|
22 |
-
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
23 |
-
|
24 |
-
user_name = ""
|
25 |
-
model_name = model
|
26 |
-
|
27 |
-
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
28 |
-
|
29 |
-
# Does the model actually exist?
|
30 |
-
if revision == "":
|
31 |
-
revision = "main"
|
32 |
-
|
33 |
-
# Seems good, creating the eval
|
34 |
-
print("Adding new eval")
|
35 |
-
|
36 |
-
eval_entry = {
|
37 |
-
"model": model,
|
38 |
-
"status": "PENDING",
|
39 |
-
"submitted_time": current_time,
|
40 |
-
"private": False,
|
41 |
-
}
|
42 |
-
|
43 |
-
# Check for duplicate submission
|
44 |
-
if f"{model}_{revision}" in REQUESTED_MODELS:
|
45 |
-
return styled_warning("This model has been already submitted.")
|
46 |
-
|
47 |
-
print("Creating eval file")
|
48 |
-
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
49 |
-
os.makedirs(OUT_DIR, exist_ok=True)
|
50 |
-
out_path = f"{OUT_DIR}/{model_name}_eval_request_False.json"
|
51 |
-
|
52 |
-
with open(out_path, "w") as f:
|
53 |
-
f.write(json.dumps(eval_entry))
|
54 |
-
|
55 |
-
print("Uploading eval file")
|
56 |
-
API.upload_file(
|
57 |
-
path_or_fileobj=out_path,
|
58 |
-
path_in_repo=out_path.split("eval-queue/")[1],
|
59 |
-
repo_id=QUEUE_REPO,
|
60 |
-
repo_type="dataset",
|
61 |
-
commit_message=f"Add {model} to eval queue",
|
62 |
-
)
|
63 |
-
|
64 |
-
# Remove the local file
|
65 |
-
os.remove(out_path)
|
66 |
-
|
67 |
-
return styled_message(
|
68 |
-
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
|
69 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{new/src → src}/texts.py
RENAMED
File without changes
|