""" Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/embeddings.py """ from typing import Optional import math import torch from torch import nn # pylint: disable=unused-import from diffusers.models.embeddings import TimestepEmbedding class Timesteps(nn.Module): def __init__( self, num_channels: int, flip_sin_to_cos: bool = True, downscale_freq_shift: float = 0, ): super().__init__() self.num_channels = num_channels self.flip_sin_to_cos = flip_sin_to_cos self.downscale_freq_shift = downscale_freq_shift def forward(self, timesteps): t_emb = get_timestep_embedding( timesteps, self.num_channels, flip_sin_to_cos=self.flip_sin_to_cos, downscale_freq_shift=self.downscale_freq_shift, ) return t_emb class Positions2d(nn.Module): def __init__( self, num_channels: int, flip_sin_to_cos: bool = True, downscale_freq_shift: float = 0, ): super().__init__() self.num_channels = num_channels self.flip_sin_to_cos = flip_sin_to_cos self.downscale_freq_shift = downscale_freq_shift def forward(self, grid): h_emb = get_timestep_embedding( grid[0], self.num_channels // 2, flip_sin_to_cos=self.flip_sin_to_cos, downscale_freq_shift=self.downscale_freq_shift, ) w_emb = get_timestep_embedding( grid[1], self.num_channels // 2, flip_sin_to_cos=self.flip_sin_to_cos, downscale_freq_shift=self.downscale_freq_shift, ) emb = torch.cat((h_emb, w_emb), dim=-1) return emb def get_timestep_embedding( timesteps: torch.Tensor, embedding_dim: int, flip_sin_to_cos: bool = False, downscale_freq_shift: float = 1, scale: float = 1, max_period: int = 10000, ): """ This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings. :param timesteps: a 1-D or 2-D Tensor of N indices, one per batch element. These may be fractional. :param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an [N x dim] or [N x M x dim] Tensor of positional embeddings. """ if len(timesteps.shape) not in [1, 2]: raise ValueError("Timesteps should be a 1D or 2D tensor") half_dim = embedding_dim // 2 exponent = -math.log(max_period) * torch.arange(start=0, end=half_dim, dtype=torch.float32, device=timesteps.device) exponent = exponent / (half_dim - downscale_freq_shift) emb = torch.exp(exponent) emb = timesteps[..., None].float() * emb # scale embeddings emb = scale * emb # concat sine and cosine embeddings emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1) # flip sine and cosine embeddings if flip_sin_to_cos: emb = torch.cat([emb[..., half_dim:], emb[..., :half_dim]], dim=-1) # zero pad if embedding_dim % 2 == 1: emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) return emb