""" References: - DiT: https://github.com/facebookresearch/DiT/blob/main/models.py - Diffusion Forcing: https://github.com/buoyancy99/diffusion-forcing/blob/main/algorithms/diffusion_forcing/models/unet3d.py - Latte: https://github.com/Vchitect/Latte/blob/main/models/latte.py """ from typing import Optional, Literal import torch from torch import nn from rotary_embedding_torch import RotaryEmbedding from einops import rearrange from embeddings import Timesteps, TimestepEmbedding from attention import SpatialAxialAttention, TemporalAxialAttention from timm.models.vision_transformer import Mlp from timm.layers.helpers import to_2tuple import math def modulate(x, shift, scale): fixed_dims = [1] * len(shift.shape[1:]) shift = shift.repeat(x.shape[0] // shift.shape[0], *fixed_dims) scale = scale.repeat(x.shape[0] // scale.shape[0], *fixed_dims) while shift.dim() < x.dim(): shift = shift.unsqueeze(-2) scale = scale.unsqueeze(-2) return x * (1 + scale) + shift def gate(x, g): fixed_dims = [1] * len(g.shape[1:]) g = g.repeat(x.shape[0] // g.shape[0], *fixed_dims) while g.dim() < x.dim(): g = g.unsqueeze(-2) return g * x class PatchEmbed(nn.Module): """2D Image to Patch Embedding""" def __init__( self, img_height=256, img_width=256, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True, ): super().__init__() img_size = (img_height, img_width) patch_size = to_2tuple(patch_size) self.img_size = img_size self.patch_size = patch_size self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.num_patches = self.grid_size[0] * self.grid_size[1] self.flatten = flatten self.proj = nn.Conv2d( in_chans, embed_dim, kernel_size=patch_size, stride=patch_size ) self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() def forward(self, x, random_sample=False): B, C, H, W = x.shape assert random_sample or ( H == self.img_size[0] and W == self.img_size[1] ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x) if self.flatten: x = rearrange(x, "B C H W -> B (H W) C") else: x = rearrange(x, "B C H W -> B H W C") x = self.norm(x) return x class TimestepEmbedder(nn.Module): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256): super().__init__() self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True), # hidden_size is diffusion model hidden size nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True), ) self.frequency_embedding_size = frequency_embedding_size @staticmethod def timestep_embedding(t, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(device=t.device) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding def forward(self, t): t_freq = self.timestep_embedding(t, self.frequency_embedding_size) t_emb = self.mlp(t_freq) return t_emb class FinalLayer(nn.Module): """ The final layer of DiT. """ def __init__(self, hidden_size, patch_size, out_channels): super().__init__() self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True) ) def forward(self, x, c): shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1) x = modulate(self.norm_final(x), shift, scale) x = self.linear(x) return x class SpatioTemporalDiTBlock(nn.Module): def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, is_causal=True, spatial_rotary_emb: Optional[RotaryEmbedding] = None, temporal_rotary_emb: Optional[RotaryEmbedding] = None): super().__init__() self.is_causal = is_causal mlp_hidden_dim = int(hidden_size * mlp_ratio) approx_gelu = lambda: nn.GELU(approximate="tanh") self.s_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.s_attn = SpatialAxialAttention(hidden_size, heads=num_heads, dim_head=hidden_size // num_heads, rotary_emb=spatial_rotary_emb) self.s_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.s_mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0) self.s_adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True) ) self.t_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.t_attn = TemporalAxialAttention(hidden_size, heads=num_heads, dim_head=hidden_size // num_heads, is_causal=is_causal, rotary_emb=temporal_rotary_emb) self.t_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.t_mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0) self.t_adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True) ) def forward(self, x, c): B, T, H, W, D = x.shape # spatial block s_shift_msa, s_scale_msa, s_gate_msa, s_shift_mlp, s_scale_mlp, s_gate_mlp = self.s_adaLN_modulation(c).chunk(6, dim=-1) x = x + gate(self.s_attn(modulate(self.s_norm1(x), s_shift_msa, s_scale_msa)), s_gate_msa) x = x + gate(self.s_mlp(modulate(self.s_norm2(x), s_shift_mlp, s_scale_mlp)), s_gate_mlp) # temporal block t_shift_msa, t_scale_msa, t_gate_msa, t_shift_mlp, t_scale_mlp, t_gate_mlp = self.t_adaLN_modulation(c).chunk(6, dim=-1) x = x + gate(self.t_attn(modulate(self.t_norm1(x), t_shift_msa, t_scale_msa)), t_gate_msa) x = x + gate(self.t_mlp(modulate(self.t_norm2(x), t_shift_mlp, t_scale_mlp)), t_gate_mlp) return x class DiT(nn.Module): """ Diffusion model with a Transformer backbone. """ def __init__( self, input_h=18, input_w=32, patch_size=2, in_channels=16, hidden_size=1024, depth=12, num_heads=16, mlp_ratio=4.0, external_cond_dim=25, max_frames=32, ): super().__init__() self.in_channels = in_channels self.out_channels = in_channels self.patch_size = patch_size self.num_heads = num_heads self.max_frames = max_frames self.x_embedder = PatchEmbed(input_h, input_w, patch_size, in_channels, hidden_size, flatten=False) self.t_embedder = TimestepEmbedder(hidden_size) frame_h, frame_w = self.x_embedder.grid_size self.spatial_rotary_emb = RotaryEmbedding(dim=hidden_size // num_heads // 2, freqs_for="pixel", max_freq=256) self.temporal_rotary_emb = RotaryEmbedding(dim=hidden_size // num_heads) self.external_cond = nn.Linear(external_cond_dim, hidden_size) if external_cond_dim > 0 else nn.Identity() self.blocks = nn.ModuleList( [ SpatioTemporalDiTBlock( hidden_size, num_heads, mlp_ratio=mlp_ratio, is_causal=True, spatial_rotary_emb=self.spatial_rotary_emb, temporal_rotary_emb=self.temporal_rotary_emb, ) for _ in range(depth) ] ) self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels) self.initialize_weights() def initialize_weights(self): # Initialize transformer layers: def _basic_init(module): if isinstance(module, nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) # Initialize patch_embed like nn.Linear (instead of nn.Conv2d): w = self.x_embedder.proj.weight.data nn.init.xavier_uniform_(w.view([w.shape[0], -1])) nn.init.constant_(self.x_embedder.proj.bias, 0) # Initialize timestep embedding MLP: nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) # Zero-out adaLN modulation layers in DiT blocks: for block in self.blocks: nn.init.constant_(block.s_adaLN_modulation[-1].weight, 0) nn.init.constant_(block.s_adaLN_modulation[-1].bias, 0) nn.init.constant_(block.t_adaLN_modulation[-1].weight, 0) nn.init.constant_(block.t_adaLN_modulation[-1].bias, 0) # Zero-out output layers: nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) nn.init.constant_(self.final_layer.linear.weight, 0) nn.init.constant_(self.final_layer.linear.bias, 0) def unpatchify(self, x): """ x: (N, H, W, patch_size**2 * C) imgs: (N, H, W, C) """ c = self.out_channels p = self.x_embedder.patch_size[0] h = x.shape[1] w = x.shape[2] x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) x = torch.einsum('nhwpqc->nchpwq', x) imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p)) return imgs def forward(self, x, t, external_cond=None): """ Forward pass of DiT. x: (B, T, C, H, W) tensor of spatial inputs (images or latent representations of images) t: (B, T,) tensor of diffusion timesteps """ B, T, C, H, W = x.shape # add spatial embeddings x = rearrange(x, "b t c h w -> (b t) c h w") x = self.x_embedder(x) # (B*T, C, H, W) -> (B*T, H/2, W/2, D) , C = 16, D = d_model # restore shape x = rearrange(x, "(b t) h w d -> b t h w d", t = T) # embed noise steps t = rearrange(t, "b t -> (b t)") c = self.t_embedder(t) # (N, D) c = rearrange(c, "(b t) d -> b t d", t = T) if torch.is_tensor(external_cond): c += self.external_cond(external_cond) for block in self.blocks: x = block(x, c) # (N, T, H, W, D) x = self.final_layer(x, c) # (N, T, H, W, patch_size ** 2 * out_channels) # unpatchify x = rearrange(x, "b t h w d -> (b t) h w d") x = self.unpatchify(x) # (N, out_channels, H, W) x = rearrange(x, "(b t) c h w -> b t c h w", t = T) return x def DiT_S_2(): return DiT( patch_size=2, hidden_size=1024, depth=16, num_heads=16, ) DiT_models = { "DiT-S/2": DiT_S_2 }