Spaces:
Runtime error
Runtime error
Update open_oasis_master/generate.py
Browse files- open_oasis_master/generate.py +108 -107
open_oasis_master/generate.py
CHANGED
@@ -13,110 +13,111 @@ from torch import autocast
|
|
13 |
import os
|
14 |
#assert torch.cuda.is_available()
|
15 |
#device = "cuda:0"
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
model
|
22 |
-
model =
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
vae
|
28 |
-
vae
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
x =
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
x =
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
alphas_cumprod =
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
with
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
x =
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
x = (x
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
13 |
import os
|
14 |
#assert torch.cuda.is_available()
|
15 |
#device = "cuda:0"
|
16 |
+
def run_mod():
|
17 |
+
device = "cpu"
|
18 |
+
|
19 |
+
# load DiT checkpoint
|
20 |
+
ckpt = torch.load("oasis500m.pt",map_location=torch.device('cpu'))
|
21 |
+
model = DiT_models["DiT-S/2"]()
|
22 |
+
model.load_state_dict(ckpt, strict=False)
|
23 |
+
model = model.to(device).eval()
|
24 |
+
|
25 |
+
# load VAE checkpoint
|
26 |
+
vae_ckpt = torch.load("vit-l-20.pt",map_location=torch.device('cpu'))
|
27 |
+
vae = VAE_models["vit-l-20-shallow-encoder"]()
|
28 |
+
vae.load_state_dict(vae_ckpt)
|
29 |
+
vae = vae.to(device).eval()
|
30 |
+
|
31 |
+
# sampling params
|
32 |
+
B = 1
|
33 |
+
total_frames = 32
|
34 |
+
max_noise_level = 1000
|
35 |
+
ddim_noise_steps = 100
|
36 |
+
noise_range = torch.linspace(-1, max_noise_level - 1, ddim_noise_steps + 1)
|
37 |
+
noise_abs_max = 20
|
38 |
+
ctx_max_noise_idx = ddim_noise_steps // 10 * 3
|
39 |
+
|
40 |
+
# get input video
|
41 |
+
print(os.getcwd())
|
42 |
+
video_id = "snippy-chartreuse-mastiff-f79998db196d-20220401-224517.chunk_001"
|
43 |
+
mp4_path = f"{os.getcwd()}/open_oasis_master/sample_data/{video_id}.mp4"
|
44 |
+
actions_path = f"{os.getcwd()}/open_oasis_master/sample_data/{video_id}.actions.pt"
|
45 |
+
video = read_video(mp4_path, pts_unit="sec")[0].float() / 255
|
46 |
+
actions = one_hot_actions(torch.load(actions_path,map_location=torch.device('cpu')))
|
47 |
+
offset = 100
|
48 |
+
video = video[offset:offset+total_frames].unsqueeze(0)
|
49 |
+
actions = actions[offset:offset+total_frames].unsqueeze(0)
|
50 |
+
|
51 |
+
# sampling inputs
|
52 |
+
n_prompt_frames = 1
|
53 |
+
x = video[:, :n_prompt_frames]
|
54 |
+
x = x.to(device)
|
55 |
+
actions = actions.to(device)
|
56 |
+
|
57 |
+
# vae encoding
|
58 |
+
scaling_factor = 0.07843137255
|
59 |
+
x = rearrange(x, "b t h w c -> (b t) c h w")
|
60 |
+
H, W = x.shape[-2:]
|
61 |
+
with torch.no_grad():
|
62 |
+
x = vae.encode(x * 2 - 1).mean * scaling_factor
|
63 |
+
x = rearrange(x, "(b t) (h w) c -> b t c h w", t=n_prompt_frames, h=H//vae.patch_size, w=W//vae.patch_size)
|
64 |
+
|
65 |
+
# get alphas
|
66 |
+
betas = sigmoid_beta_schedule(max_noise_level).to(device)
|
67 |
+
alphas = 1.0 - betas
|
68 |
+
alphas_cumprod = torch.cumprod(alphas, dim=0)
|
69 |
+
alphas_cumprod = rearrange(alphas_cumprod, "T -> T 1 1 1")
|
70 |
+
|
71 |
+
# sampling loop
|
72 |
+
for i in tqdm(range(n_prompt_frames, total_frames)):
|
73 |
+
chunk = torch.randn((B, 1, *x.shape[-3:]), device=device)
|
74 |
+
chunk = torch.clamp(chunk, -noise_abs_max, +noise_abs_max)
|
75 |
+
x = torch.cat([x, chunk], dim=1)
|
76 |
+
start_frame = max(0, i + 1 - model.max_frames)
|
77 |
+
|
78 |
+
for noise_idx in reversed(range(1, ddim_noise_steps + 1)):
|
79 |
+
# set up noise values
|
80 |
+
ctx_noise_idx = min(noise_idx, ctx_max_noise_idx)
|
81 |
+
t_ctx = torch.full((B, i), noise_range[ctx_noise_idx], dtype=torch.long, device=device)
|
82 |
+
t = torch.full((B, 1), noise_range[noise_idx], dtype=torch.long, device=device)
|
83 |
+
t_next = torch.full((B, 1), noise_range[noise_idx - 1], dtype=torch.long, device=device)
|
84 |
+
t_next = torch.where(t_next < 0, t, t_next)
|
85 |
+
t = torch.cat([t_ctx, t], dim=1)
|
86 |
+
t_next = torch.cat([t_ctx, t_next], dim=1)
|
87 |
+
|
88 |
+
# sliding window
|
89 |
+
x_curr = x.clone()
|
90 |
+
x_curr = x_curr[:, start_frame:]
|
91 |
+
t = t[:, start_frame:]
|
92 |
+
t_next = t_next[:, start_frame:]
|
93 |
+
|
94 |
+
# add some noise to the context
|
95 |
+
ctx_noise = torch.randn_like(x_curr[:, :-1])
|
96 |
+
ctx_noise = torch.clamp(ctx_noise, -noise_abs_max, +noise_abs_max)
|
97 |
+
x_curr[:, :-1] = alphas_cumprod[t[:, :-1]].sqrt() * x_curr[:, :-1] + (1 - alphas_cumprod[t[:, :-1]]).sqrt() * ctx_noise
|
98 |
+
|
99 |
+
# get model predictions
|
100 |
+
with torch.no_grad():
|
101 |
+
with autocast("cpu", dtype=torch.half):
|
102 |
+
v = model(x_curr, t, actions[:, start_frame : i + 1])
|
103 |
+
|
104 |
+
x_start = alphas_cumprod[t].sqrt() * x_curr - (1 - alphas_cumprod[t]).sqrt() * v
|
105 |
+
x_noise = ((1 / alphas_cumprod[t]).sqrt() * x_curr - x_start) \
|
106 |
+
/ (1 / alphas_cumprod[t] - 1).sqrt()
|
107 |
+
|
108 |
+
# get frame prediction
|
109 |
+
x_pred = alphas_cumprod[t_next].sqrt() * x_start + x_noise * (1 - alphas_cumprod[t_next]).sqrt()
|
110 |
+
x[:, -1:] = x_pred[:, -1:]
|
111 |
+
|
112 |
+
# vae decoding
|
113 |
+
x = rearrange(x, "b t c h w -> (b t) (h w) c")
|
114 |
+
with torch.no_grad():
|
115 |
+
x = (vae.decode(x / scaling_factor) + 1) / 2
|
116 |
+
x = rearrange(x, "(b t) c h w -> b t h w c", t=total_frames)
|
117 |
+
|
118 |
+
# save video
|
119 |
+
x = torch.clamp(x, 0, 1)
|
120 |
+
x = (x * 255).byte()
|
121 |
+
write_video("video.mp4", x[0], fps=20)
|
122 |
+
print("generation saved to video.mp4.")
|
123 |
+
return "video.mp4"
|