tree3po commited on
Commit
2599057
1 Parent(s): 10f43d5

Upload 21 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ open-oasis-master/media/sample_0.gif filter=lfs diff=lfs merge=lfs -text
37
+ open-oasis-master/media/sample_1.gif filter=lfs diff=lfs merge=lfs -text
38
+ open-oasis-master/sample_data/Player729-f153ac423f61-20210806-224813.chunk_000.mp4 filter=lfs diff=lfs merge=lfs -text
39
+ open-oasis-master/sample_data/snippy-chartreuse-mastiff-f79998db196d-20220401-224517.chunk_001.mp4 filter=lfs diff=lfs merge=lfs -text
40
+ open-oasis-master/sample_data/treechop-f153ac423f61-20210916-183423.chunk_000.mp4 filter=lfs diff=lfs merge=lfs -text
open-oasis-master/.gitattributes ADDED
@@ -0,0 +1 @@
 
 
1
+ video.mp4 filter=lfs diff=lfs merge=lfs -text
open-oasis-master/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2024 Etched & Decart
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
open-oasis-master/README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Oasis 500M
2
+
3
+ ![](./media/arch.png)
4
+
5
+ ![](./media/thumb.png)
6
+
7
+ Oasis is an interactive world model developed by [Decart](https://www.decart.ai/) and [Etched](https://www.etched.com/). Based on diffusion transformers, Oasis takes in user keyboard input and generates gameplay in an autoregressive manner. We release the weights for Oasis 500M, a downscaled version of the model, along with inference code for action-conditional frame generation.
8
+
9
+ For more details, see our [joint blog post](https://oasis-model.github.io/) to learn more.
10
+
11
+ And to use the most powerful version of the model, be sure to check out the [live demo](https://oasis.us.decart.ai/) as well!
12
+
13
+ ## Setup
14
+ ```
15
+ git clone https://github.com/etched-ai/open-oasis.git
16
+ cd open-oasis
17
+ pip install -r requirements.txt
18
+ ```
19
+
20
+ ## Download the model weights
21
+ ```
22
+ huggingface-cli login
23
+ huggingface-cli download Etched/oasis-500m oasis500m.pt # DiT checkpoint
24
+ huggingface-cli download Etched/oasis-500m vit-l-20.pt # ViT VAE checkpoint
25
+ ```
26
+
27
+ ## Basic Usage
28
+ We include a basic inference script that loads a prompt frame from a video and generates additional frames conditioned on actions.
29
+ ```
30
+ python generate.py
31
+ ```
32
+ The resulting video will be saved to `video.mp4`. Here's are some examples of a generation from this 500M model!
33
+
34
+ ![](media/sample_0.gif)
35
+ ![](media/sample_1.gif)
36
+
37
+ > Hint: try swapping out the `.mp4` input file in the script to try different environments!
open-oasis-master/attention.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Based on https://github.com/buoyancy99/diffusion-forcing/blob/main/algorithms/diffusion_forcing/models/attention.py
3
+ """
4
+ from typing import Optional
5
+ from collections import namedtuple
6
+ import torch
7
+ from torch import nn
8
+ from torch.nn import functional as F
9
+ from einops import rearrange
10
+ from rotary_embedding_torch import RotaryEmbedding, apply_rotary_emb
11
+ from embeddings import TimestepEmbedding, Timesteps, Positions2d
12
+
13
+ class TemporalAxialAttention(nn.Module):
14
+ def __init__(
15
+ self,
16
+ dim: int,
17
+ heads: int = 4,
18
+ dim_head: int = 32,
19
+ is_causal: bool = True,
20
+ rotary_emb: Optional[RotaryEmbedding] = None,
21
+ ):
22
+ super().__init__()
23
+ self.inner_dim = dim_head * heads
24
+ self.heads = heads
25
+ self.head_dim = dim_head
26
+ self.inner_dim = dim_head * heads
27
+ self.to_qkv = nn.Linear(dim, self.inner_dim * 3, bias=False)
28
+ self.to_out = nn.Linear(self.inner_dim, dim)
29
+
30
+ self.rotary_emb = rotary_emb
31
+ self.time_pos_embedding = (
32
+ nn.Sequential(
33
+ Timesteps(dim),
34
+ TimestepEmbedding(in_channels=dim, time_embed_dim=dim * 4, out_dim=dim),
35
+ )
36
+ if rotary_emb is None
37
+ else None
38
+ )
39
+ self.is_causal = is_causal
40
+
41
+ def forward(self, x: torch.Tensor):
42
+ B, T, H, W, D = x.shape
43
+
44
+ if self.time_pos_embedding is not None:
45
+ time_emb = self.time_pos_embedding(
46
+ torch.arange(T, device=x.device)
47
+ )
48
+ x = x + rearrange(time_emb, "t d -> 1 t 1 1 d")
49
+
50
+ q, k, v = self.to_qkv(x).chunk(3, dim=-1)
51
+
52
+ q = rearrange(q, "B T H W (h d) -> (B H W) h T d", h=self.heads)
53
+ k = rearrange(k, "B T H W (h d) -> (B H W) h T d", h=self.heads)
54
+ v = rearrange(v, "B T H W (h d) -> (B H W) h T d", h=self.heads)
55
+
56
+ if self.rotary_emb is not None:
57
+ q = self.rotary_emb.rotate_queries_or_keys(q, self.rotary_emb.freqs)
58
+ k = self.rotary_emb.rotate_queries_or_keys(k, self.rotary_emb.freqs)
59
+
60
+ q, k, v = map(lambda t: t.contiguous(), (q, k, v))
61
+
62
+ x = F.scaled_dot_product_attention(
63
+ query=q, key=k, value=v, is_causal=self.is_causal
64
+ )
65
+
66
+ x = rearrange(x, "(B H W) h T d -> B T H W (h d)", B=B, H=H, W=W)
67
+ x = x.to(q.dtype)
68
+
69
+ # linear proj
70
+ x = self.to_out(x)
71
+ return x
72
+
73
+ class SpatialAxialAttention(nn.Module):
74
+ def __init__(
75
+ self,
76
+ dim: int,
77
+ heads: int = 4,
78
+ dim_head: int = 32,
79
+ rotary_emb: Optional[RotaryEmbedding] = None,
80
+ ):
81
+ super().__init__()
82
+ self.inner_dim = dim_head * heads
83
+ self.heads = heads
84
+ self.head_dim = dim_head
85
+ self.inner_dim = dim_head * heads
86
+ self.to_qkv = nn.Linear(dim, self.inner_dim * 3, bias=False)
87
+ self.to_out = nn.Linear(self.inner_dim, dim)
88
+
89
+ self.rotary_emb = rotary_emb
90
+ self.space_pos_embedding = (
91
+ nn.Sequential(
92
+ Positions2d(dim),
93
+ TimestepEmbedding(in_channels=dim, time_embed_dim=dim * 4, out_dim=dim),
94
+ )
95
+ if rotary_emb is None
96
+ else None
97
+ )
98
+
99
+ def forward(self, x: torch.Tensor):
100
+ B, T, H, W, D = x.shape
101
+
102
+ if self.space_pos_embedding is not None:
103
+ h_steps = torch.arange(H, device=x.device)
104
+ w_steps = torch.arange(W, device=x.device)
105
+ grid = torch.meshgrid(h_steps, w_steps, indexing="ij")
106
+ space_emb = self.space_pos_embedding(grid)
107
+ x = x + rearrange(space_emb, "h w d -> 1 1 h w d")
108
+
109
+ q, k, v = self.to_qkv(x).chunk(3, dim=-1)
110
+
111
+ q = rearrange(q, "B T H W (h d) -> (B T) h H W d", h=self.heads)
112
+ k = rearrange(k, "B T H W (h d) -> (B T) h H W d", h=self.heads)
113
+ v = rearrange(v, "B T H W (h d) -> (B T) h H W d", h=self.heads)
114
+
115
+ if self.rotary_emb is not None:
116
+ freqs = self.rotary_emb.get_axial_freqs(H, W)
117
+ q = apply_rotary_emb(freqs, q)
118
+ k = apply_rotary_emb(freqs, k)
119
+
120
+ # prepare for attn
121
+ q = rearrange(q, "(B T) h H W d -> (B T) h (H W) d", B=B, T=T, h=self.heads)
122
+ k = rearrange(k, "(B T) h H W d -> (B T) h (H W) d", B=B, T=T, h=self.heads)
123
+ v = rearrange(v, "(B T) h H W d -> (B T) h (H W) d", B=B, T=T, h=self.heads)
124
+
125
+ q, k, v = map(lambda t: t.contiguous(), (q, k, v))
126
+
127
+ x = F.scaled_dot_product_attention(
128
+ query=q, key=k, value=v, is_causal=False
129
+ )
130
+
131
+ x = rearrange(x, "(B T) h (H W) d -> B T H W (h d)", B=B, H=H, W=W)
132
+ x = x.to(q.dtype)
133
+
134
+ # linear proj
135
+ x = self.to_out(x)
136
+ return x
137
+
open-oasis-master/dit.py ADDED
@@ -0,0 +1,310 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ References:
3
+ - DiT: https://github.com/facebookresearch/DiT/blob/main/models.py
4
+ - Diffusion Forcing: https://github.com/buoyancy99/diffusion-forcing/blob/main/algorithms/diffusion_forcing/models/unet3d.py
5
+ - Latte: https://github.com/Vchitect/Latte/blob/main/models/latte.py
6
+ """
7
+ from typing import Optional, Literal
8
+ import torch
9
+ from torch import nn
10
+ from rotary_embedding_torch import RotaryEmbedding
11
+ from einops import rearrange
12
+ from embeddings import Timesteps, TimestepEmbedding
13
+ from attention import SpatialAxialAttention, TemporalAxialAttention
14
+ from timm.models.vision_transformer import Mlp
15
+ from timm.layers.helpers import to_2tuple
16
+ import math
17
+
18
+ def modulate(x, shift, scale):
19
+ fixed_dims = [1] * len(shift.shape[1:])
20
+ shift = shift.repeat(x.shape[0] // shift.shape[0], *fixed_dims)
21
+ scale = scale.repeat(x.shape[0] // scale.shape[0], *fixed_dims)
22
+ while shift.dim() < x.dim():
23
+ shift = shift.unsqueeze(-2)
24
+ scale = scale.unsqueeze(-2)
25
+ return x * (1 + scale) + shift
26
+
27
+ def gate(x, g):
28
+ fixed_dims = [1] * len(g.shape[1:])
29
+ g = g.repeat(x.shape[0] // g.shape[0], *fixed_dims)
30
+ while g.dim() < x.dim():
31
+ g = g.unsqueeze(-2)
32
+ return g * x
33
+
34
+ class PatchEmbed(nn.Module):
35
+ """2D Image to Patch Embedding"""
36
+
37
+ def __init__(
38
+ self,
39
+ img_height=256,
40
+ img_width=256,
41
+ patch_size=16,
42
+ in_chans=3,
43
+ embed_dim=768,
44
+ norm_layer=None,
45
+ flatten=True,
46
+ ):
47
+ super().__init__()
48
+ img_size = (img_height, img_width)
49
+ patch_size = to_2tuple(patch_size)
50
+ self.img_size = img_size
51
+ self.patch_size = patch_size
52
+ self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
53
+ self.num_patches = self.grid_size[0] * self.grid_size[1]
54
+ self.flatten = flatten
55
+
56
+ self.proj = nn.Conv2d(
57
+ in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
58
+ )
59
+ self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
60
+
61
+ def forward(self, x, random_sample=False):
62
+ B, C, H, W = x.shape
63
+ assert random_sample or (
64
+ H == self.img_size[0] and W == self.img_size[1]
65
+ ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
66
+ x = self.proj(x)
67
+ if self.flatten:
68
+ x = rearrange(x, "B C H W -> B (H W) C")
69
+ else:
70
+ x = rearrange(x, "B C H W -> B H W C")
71
+ x = self.norm(x)
72
+ return x
73
+
74
+ class TimestepEmbedder(nn.Module):
75
+ """
76
+ Embeds scalar timesteps into vector representations.
77
+ """
78
+ def __init__(self, hidden_size, frequency_embedding_size=256):
79
+ super().__init__()
80
+ self.mlp = nn.Sequential(
81
+ nn.Linear(frequency_embedding_size, hidden_size, bias=True), # hidden_size is diffusion model hidden size
82
+ nn.SiLU(),
83
+ nn.Linear(hidden_size, hidden_size, bias=True),
84
+ )
85
+ self.frequency_embedding_size = frequency_embedding_size
86
+
87
+ @staticmethod
88
+ def timestep_embedding(t, dim, max_period=10000):
89
+ """
90
+ Create sinusoidal timestep embeddings.
91
+ :param t: a 1-D Tensor of N indices, one per batch element.
92
+ These may be fractional.
93
+ :param dim: the dimension of the output.
94
+ :param max_period: controls the minimum frequency of the embeddings.
95
+ :return: an (N, D) Tensor of positional embeddings.
96
+ """
97
+ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
98
+ half = dim // 2
99
+ freqs = torch.exp(
100
+ -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
101
+ ).to(device=t.device)
102
+ args = t[:, None].float() * freqs[None]
103
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
104
+ if dim % 2:
105
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
106
+ return embedding
107
+
108
+ def forward(self, t):
109
+ t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
110
+ t_emb = self.mlp(t_freq)
111
+ return t_emb
112
+
113
+ class FinalLayer(nn.Module):
114
+ """
115
+ The final layer of DiT.
116
+ """
117
+ def __init__(self, hidden_size, patch_size, out_channels):
118
+ super().__init__()
119
+ self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
120
+ self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
121
+ self.adaLN_modulation = nn.Sequential(
122
+ nn.SiLU(),
123
+ nn.Linear(hidden_size, 2 * hidden_size, bias=True)
124
+ )
125
+
126
+ def forward(self, x, c):
127
+ shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1)
128
+ x = modulate(self.norm_final(x), shift, scale)
129
+ x = self.linear(x)
130
+ return x
131
+
132
+ class SpatioTemporalDiTBlock(nn.Module):
133
+ def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, is_causal=True, spatial_rotary_emb: Optional[RotaryEmbedding] = None, temporal_rotary_emb: Optional[RotaryEmbedding] = None):
134
+ super().__init__()
135
+ self.is_causal = is_causal
136
+ mlp_hidden_dim = int(hidden_size * mlp_ratio)
137
+ approx_gelu = lambda: nn.GELU(approximate="tanh")
138
+
139
+ self.s_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
140
+ self.s_attn = SpatialAxialAttention(hidden_size, heads=num_heads, dim_head=hidden_size // num_heads, rotary_emb=spatial_rotary_emb)
141
+ self.s_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
142
+ self.s_mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
143
+ self.s_adaLN_modulation = nn.Sequential(
144
+ nn.SiLU(),
145
+ nn.Linear(hidden_size, 6 * hidden_size, bias=True)
146
+ )
147
+
148
+ self.t_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
149
+ self.t_attn = TemporalAxialAttention(hidden_size, heads=num_heads, dim_head=hidden_size // num_heads, is_causal=is_causal, rotary_emb=temporal_rotary_emb)
150
+ self.t_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
151
+ self.t_mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
152
+ self.t_adaLN_modulation = nn.Sequential(
153
+ nn.SiLU(),
154
+ nn.Linear(hidden_size, 6 * hidden_size, bias=True)
155
+ )
156
+
157
+ def forward(self, x, c):
158
+ B, T, H, W, D = x.shape
159
+
160
+ # spatial block
161
+ s_shift_msa, s_scale_msa, s_gate_msa, s_shift_mlp, s_scale_mlp, s_gate_mlp = self.s_adaLN_modulation(c).chunk(6, dim=-1)
162
+ x = x + gate(self.s_attn(modulate(self.s_norm1(x), s_shift_msa, s_scale_msa)), s_gate_msa)
163
+ x = x + gate(self.s_mlp(modulate(self.s_norm2(x), s_shift_mlp, s_scale_mlp)), s_gate_mlp)
164
+
165
+ # temporal block
166
+ t_shift_msa, t_scale_msa, t_gate_msa, t_shift_mlp, t_scale_mlp, t_gate_mlp = self.t_adaLN_modulation(c).chunk(6, dim=-1)
167
+ x = x + gate(self.t_attn(modulate(self.t_norm1(x), t_shift_msa, t_scale_msa)), t_gate_msa)
168
+ x = x + gate(self.t_mlp(modulate(self.t_norm2(x), t_shift_mlp, t_scale_mlp)), t_gate_mlp)
169
+
170
+ return x
171
+
172
+ class DiT(nn.Module):
173
+ """
174
+ Diffusion model with a Transformer backbone.
175
+ """
176
+ def __init__(
177
+ self,
178
+ input_h=18,
179
+ input_w=32,
180
+ patch_size=2,
181
+ in_channels=16,
182
+ hidden_size=1024,
183
+ depth=12,
184
+ num_heads=16,
185
+ mlp_ratio=4.0,
186
+ external_cond_dim=25,
187
+ max_frames=32,
188
+ ):
189
+ super().__init__()
190
+ self.in_channels = in_channels
191
+ self.out_channels = in_channels
192
+ self.patch_size = patch_size
193
+ self.num_heads = num_heads
194
+ self.max_frames = max_frames
195
+
196
+ self.x_embedder = PatchEmbed(input_h, input_w, patch_size, in_channels, hidden_size, flatten=False)
197
+ self.t_embedder = TimestepEmbedder(hidden_size)
198
+ frame_h, frame_w = self.x_embedder.grid_size
199
+
200
+ self.spatial_rotary_emb = RotaryEmbedding(dim=hidden_size // num_heads // 2, freqs_for="pixel", max_freq=256)
201
+ self.temporal_rotary_emb = RotaryEmbedding(dim=hidden_size // num_heads)
202
+ self.external_cond = nn.Linear(external_cond_dim, hidden_size) if external_cond_dim > 0 else nn.Identity()
203
+
204
+ self.blocks = nn.ModuleList(
205
+ [
206
+ SpatioTemporalDiTBlock(
207
+ hidden_size,
208
+ num_heads,
209
+ mlp_ratio=mlp_ratio,
210
+ is_causal=True,
211
+ spatial_rotary_emb=self.spatial_rotary_emb,
212
+ temporal_rotary_emb=self.temporal_rotary_emb,
213
+ )
214
+ for _ in range(depth)
215
+ ]
216
+ )
217
+
218
+ self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels)
219
+ self.initialize_weights()
220
+
221
+ def initialize_weights(self):
222
+ # Initialize transformer layers:
223
+ def _basic_init(module):
224
+ if isinstance(module, nn.Linear):
225
+ torch.nn.init.xavier_uniform_(module.weight)
226
+ if module.bias is not None:
227
+ nn.init.constant_(module.bias, 0)
228
+ self.apply(_basic_init)
229
+
230
+ # Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
231
+ w = self.x_embedder.proj.weight.data
232
+ nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
233
+ nn.init.constant_(self.x_embedder.proj.bias, 0)
234
+
235
+ # Initialize timestep embedding MLP:
236
+ nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
237
+ nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
238
+
239
+ # Zero-out adaLN modulation layers in DiT blocks:
240
+ for block in self.blocks:
241
+ nn.init.constant_(block.s_adaLN_modulation[-1].weight, 0)
242
+ nn.init.constant_(block.s_adaLN_modulation[-1].bias, 0)
243
+ nn.init.constant_(block.t_adaLN_modulation[-1].weight, 0)
244
+ nn.init.constant_(block.t_adaLN_modulation[-1].bias, 0)
245
+
246
+ # Zero-out output layers:
247
+ nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
248
+ nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
249
+ nn.init.constant_(self.final_layer.linear.weight, 0)
250
+ nn.init.constant_(self.final_layer.linear.bias, 0)
251
+
252
+ def unpatchify(self, x):
253
+ """
254
+ x: (N, H, W, patch_size**2 * C)
255
+ imgs: (N, H, W, C)
256
+ """
257
+ c = self.out_channels
258
+ p = self.x_embedder.patch_size[0]
259
+ h = x.shape[1]
260
+ w = x.shape[2]
261
+
262
+ x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
263
+ x = torch.einsum('nhwpqc->nchpwq', x)
264
+ imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
265
+ return imgs
266
+
267
+ def forward(self, x, t, external_cond=None):
268
+ """
269
+ Forward pass of DiT.
270
+ x: (B, T, C, H, W) tensor of spatial inputs (images or latent representations of images)
271
+ t: (B, T,) tensor of diffusion timesteps
272
+ """
273
+
274
+ B, T, C, H, W = x.shape
275
+
276
+ # add spatial embeddings
277
+ x = rearrange(x, "b t c h w -> (b t) c h w")
278
+ x = self.x_embedder(x) # (B*T, C, H, W) -> (B*T, H/2, W/2, D) , C = 16, D = d_model
279
+ # restore shape
280
+ x = rearrange(x, "(b t) h w d -> b t h w d", t = T)
281
+ # embed noise steps
282
+ t = rearrange(t, "b t -> (b t)")
283
+ c = self.t_embedder(t) # (N, D)
284
+ c = rearrange(c, "(b t) d -> b t d", t = T)
285
+ if torch.is_tensor(external_cond):
286
+ c += self.external_cond(external_cond)
287
+ for block in self.blocks:
288
+ x = block(x, c) # (N, T, H, W, D)
289
+ x = self.final_layer(x, c) # (N, T, H, W, patch_size ** 2 * out_channels)
290
+ # unpatchify
291
+ x = rearrange(x, "b t h w d -> (b t) h w d")
292
+ x = self.unpatchify(x) # (N, out_channels, H, W)
293
+ x = rearrange(x, "(b t) c h w -> b t c h w", t = T)
294
+
295
+ return x
296
+
297
+ def DiT_S_2():
298
+ return DiT(
299
+ patch_size=2,
300
+ hidden_size=1024,
301
+ depth=16,
302
+ num_heads=16,
303
+ )
304
+
305
+ DiT_models = {
306
+ "DiT-S/2": DiT_S_2
307
+ }
308
+
309
+
310
+
open-oasis-master/embeddings.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/embeddings.py
3
+ """
4
+
5
+ from typing import Optional
6
+ import math
7
+ import torch
8
+ from torch import nn
9
+
10
+ # pylint: disable=unused-import
11
+ from diffusers.models.embeddings import TimestepEmbedding
12
+
13
+
14
+ class Timesteps(nn.Module):
15
+ def __init__(
16
+ self,
17
+ num_channels: int,
18
+ flip_sin_to_cos: bool = True,
19
+ downscale_freq_shift: float = 0,
20
+ ):
21
+ super().__init__()
22
+ self.num_channels = num_channels
23
+ self.flip_sin_to_cos = flip_sin_to_cos
24
+ self.downscale_freq_shift = downscale_freq_shift
25
+
26
+ def forward(self, timesteps):
27
+ t_emb = get_timestep_embedding(
28
+ timesteps,
29
+ self.num_channels,
30
+ flip_sin_to_cos=self.flip_sin_to_cos,
31
+ downscale_freq_shift=self.downscale_freq_shift,
32
+ )
33
+ return t_emb
34
+
35
+ class Positions2d(nn.Module):
36
+ def __init__(
37
+ self,
38
+ num_channels: int,
39
+ flip_sin_to_cos: bool = True,
40
+ downscale_freq_shift: float = 0,
41
+ ):
42
+ super().__init__()
43
+ self.num_channels = num_channels
44
+ self.flip_sin_to_cos = flip_sin_to_cos
45
+ self.downscale_freq_shift = downscale_freq_shift
46
+
47
+ def forward(self, grid):
48
+ h_emb = get_timestep_embedding(
49
+ grid[0],
50
+ self.num_channels // 2,
51
+ flip_sin_to_cos=self.flip_sin_to_cos,
52
+ downscale_freq_shift=self.downscale_freq_shift,
53
+ )
54
+ w_emb = get_timestep_embedding(
55
+ grid[1],
56
+ self.num_channels // 2,
57
+ flip_sin_to_cos=self.flip_sin_to_cos,
58
+ downscale_freq_shift=self.downscale_freq_shift,
59
+ )
60
+ emb = torch.cat((h_emb, w_emb), dim=-1)
61
+ return emb
62
+
63
+
64
+ def get_timestep_embedding(
65
+ timesteps: torch.Tensor,
66
+ embedding_dim: int,
67
+ flip_sin_to_cos: bool = False,
68
+ downscale_freq_shift: float = 1,
69
+ scale: float = 1,
70
+ max_period: int = 10000,
71
+ ):
72
+ """
73
+ This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
74
+
75
+ :param timesteps: a 1-D or 2-D Tensor of N indices, one per batch element.
76
+ These may be fractional.
77
+ :param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
78
+ embeddings. :return: an [N x dim] or [N x M x dim] Tensor of positional embeddings.
79
+ """
80
+ if len(timesteps.shape) not in [1, 2]:
81
+ raise ValueError("Timesteps should be a 1D or 2D tensor")
82
+
83
+ half_dim = embedding_dim // 2
84
+ exponent = -math.log(max_period) * torch.arange(start=0, end=half_dim, dtype=torch.float32, device=timesteps.device)
85
+ exponent = exponent / (half_dim - downscale_freq_shift)
86
+
87
+ emb = torch.exp(exponent)
88
+ emb = timesteps[..., None].float() * emb
89
+
90
+ # scale embeddings
91
+ emb = scale * emb
92
+
93
+ # concat sine and cosine embeddings
94
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
95
+
96
+ # flip sine and cosine embeddings
97
+ if flip_sin_to_cos:
98
+ emb = torch.cat([emb[..., half_dim:], emb[..., :half_dim]], dim=-1)
99
+
100
+ # zero pad
101
+ if embedding_dim % 2 == 1:
102
+ emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
103
+ return emb
open-oasis-master/generate.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ References:
3
+ - Diffusion Forcing: https://github.com/buoyancy99/diffusion-forcing
4
+ """
5
+ import torch
6
+ from dit import DiT_models
7
+ from vae import VAE_models
8
+ from torchvision.io import read_video, write_video
9
+ from utils import one_hot_actions, sigmoid_beta_schedule
10
+ from tqdm import tqdm
11
+ from einops import rearrange
12
+ from torch import autocast
13
+ assert torch.cuda.is_available()
14
+ device = "cuda:0"
15
+
16
+ # load DiT checkpoint
17
+ ckpt = torch.load("oasis500m.pt")
18
+ model = DiT_models["DiT-S/2"]()
19
+ model.load_state_dict(ckpt, strict=False)
20
+ model = model.to(device).eval()
21
+
22
+ # load VAE checkpoint
23
+ vae_ckpt = torch.load("vit-l-20.pt")
24
+ vae = VAE_models["vit-l-20-shallow-encoder"]()
25
+ vae.load_state_dict(vae_ckpt)
26
+ vae = vae.to(device).eval()
27
+
28
+ # sampling params
29
+ B = 1
30
+ total_frames = 32
31
+ max_noise_level = 1000
32
+ ddim_noise_steps = 100
33
+ noise_range = torch.linspace(-1, max_noise_level - 1, ddim_noise_steps + 1)
34
+ noise_abs_max = 20
35
+ ctx_max_noise_idx = ddim_noise_steps // 10 * 3
36
+
37
+ # get input video
38
+ video_id = "snippy-chartreuse-mastiff-f79998db196d-20220401-224517.chunk_001"
39
+ mp4_path = f"sample_data/{video_id}.mp4"
40
+ actions_path = f"sample_data/{video_id}.actions.pt"
41
+ video = read_video(mp4_path, pts_unit="sec")[0].float() / 255
42
+ actions = one_hot_actions(torch.load(actions_path))
43
+ offset = 100
44
+ video = video[offset:offset+total_frames].unsqueeze(0)
45
+ actions = actions[offset:offset+total_frames].unsqueeze(0)
46
+
47
+ # sampling inputs
48
+ n_prompt_frames = 1
49
+ x = video[:, :n_prompt_frames]
50
+ x = x.to(device)
51
+ actions = actions.to(device)
52
+
53
+ # vae encoding
54
+ scaling_factor = 0.07843137255
55
+ x = rearrange(x, "b t h w c -> (b t) c h w")
56
+ H, W = x.shape[-2:]
57
+ with torch.no_grad():
58
+ x = vae.encode(x * 2 - 1).mean * scaling_factor
59
+ x = rearrange(x, "(b t) (h w) c -> b t c h w", t=n_prompt_frames, h=H//vae.patch_size, w=W//vae.patch_size)
60
+
61
+ # get alphas
62
+ betas = sigmoid_beta_schedule(max_noise_level).to(device)
63
+ alphas = 1.0 - betas
64
+ alphas_cumprod = torch.cumprod(alphas, dim=0)
65
+ alphas_cumprod = rearrange(alphas_cumprod, "T -> T 1 1 1")
66
+
67
+ # sampling loop
68
+ for i in tqdm(range(n_prompt_frames, total_frames)):
69
+ chunk = torch.randn((B, 1, *x.shape[-3:]), device=device)
70
+ chunk = torch.clamp(chunk, -noise_abs_max, +noise_abs_max)
71
+ x = torch.cat([x, chunk], dim=1)
72
+ start_frame = max(0, i + 1 - model.max_frames)
73
+
74
+ for noise_idx in reversed(range(1, ddim_noise_steps + 1)):
75
+ # set up noise values
76
+ ctx_noise_idx = min(noise_idx, ctx_max_noise_idx)
77
+ t_ctx = torch.full((B, i), noise_range[ctx_noise_idx], dtype=torch.long, device=device)
78
+ t = torch.full((B, 1), noise_range[noise_idx], dtype=torch.long, device=device)
79
+ t_next = torch.full((B, 1), noise_range[noise_idx - 1], dtype=torch.long, device=device)
80
+ t_next = torch.where(t_next < 0, t, t_next)
81
+ t = torch.cat([t_ctx, t], dim=1)
82
+ t_next = torch.cat([t_ctx, t_next], dim=1)
83
+
84
+ # sliding window
85
+ x_curr = x.clone()
86
+ x_curr = x_curr[:, start_frame:]
87
+ t = t[:, start_frame:]
88
+ t_next = t_next[:, start_frame:]
89
+
90
+ # add some noise to the context
91
+ ctx_noise = torch.randn_like(x_curr[:, :-1])
92
+ ctx_noise = torch.clamp(ctx_noise, -noise_abs_max, +noise_abs_max)
93
+ x_curr[:, :-1] = alphas_cumprod[t[:, :-1]].sqrt() * x_curr[:, :-1] + (1 - alphas_cumprod[t[:, :-1]]).sqrt() * ctx_noise
94
+
95
+ # get model predictions
96
+ with torch.no_grad():
97
+ with autocast("cuda", dtype=torch.half):
98
+ v = model(x_curr, t, actions[:, start_frame : i + 1])
99
+
100
+ x_start = alphas_cumprod[t].sqrt() * x_curr - (1 - alphas_cumprod[t]).sqrt() * v
101
+ x_noise = ((1 / alphas_cumprod[t]).sqrt() * x_curr - x_start) \
102
+ / (1 / alphas_cumprod[t] - 1).sqrt()
103
+
104
+ # get frame prediction
105
+ x_pred = alphas_cumprod[t_next].sqrt() * x_start + x_noise * (1 - alphas_cumprod[t_next]).sqrt()
106
+ x[:, -1:] = x_pred[:, -1:]
107
+
108
+ # vae decoding
109
+ x = rearrange(x, "b t c h w -> (b t) (h w) c")
110
+ with torch.no_grad():
111
+ x = (vae.decode(x / scaling_factor) + 1) / 2
112
+ x = rearrange(x, "(b t) c h w -> b t h w c", t=total_frames)
113
+
114
+ # save video
115
+ x = torch.clamp(x, 0, 1)
116
+ x = (x * 255).byte()
117
+ write_video("video.mp4", x[0], fps=20)
118
+ print("generation saved to video.mp4.")
119
+
open-oasis-master/media/arch.png ADDED
open-oasis-master/media/sample_0.gif ADDED

Git LFS Details

  • SHA256: 684d0b42eed5f82d6285dbc46b0c69dbe4661c91fdb92043c3c298c300249574
  • Pointer size: 132 Bytes
  • Size of remote file: 3.15 MB
open-oasis-master/media/sample_1.gif ADDED

Git LFS Details

  • SHA256: d771ac40069b4e7a424d18d7c91c64904e560e5c61cc52f51f67eb6c667c39f9
  • Pointer size: 132 Bytes
  • Size of remote file: 2.95 MB
open-oasis-master/media/thumb.png ADDED
open-oasis-master/requirements.txt ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ av==13.1.0
2
+ certifi==2024.8.30
3
+ charset-normalizer==3.4.0
4
+ diffusers==0.31.0
5
+ einops==0.8.0
6
+ filelock==3.13.1
7
+ fsspec==2024.2.0
8
+ huggingface-hub==0.26.2
9
+ idna==3.10
10
+ importlib_metadata==8.5.0
11
+ Jinja2==3.1.3
12
+ MarkupSafe==2.1.5
13
+ mpmath==1.3.0
14
+ networkx==3.2.1
15
+ numpy==1.26.3
16
+ packaging==24.1
17
+ pillow==10.2.0
18
+ PyYAML==6.0.2
19
+ regex==2024.9.11
20
+ requests==2.32.3
21
+ safetensors==0.4.5
22
+ sympy==1.13.1
23
+ timm==1.0.11
24
+ torch==2.5.1
25
+ torchaudio==2.5.1
26
+ torchvision==0.20.1
27
+ tqdm==4.66.6
28
+ triton==3.1.0
29
+ typing_extensions==4.9.0
30
+ urllib3==2.2.3
31
+ zipp==3.20.2
open-oasis-master/rotary_embedding_torch.py ADDED
@@ -0,0 +1,316 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Adapted from https://github.com/lucidrains/rotary-embedding-torch/blob/main/rotary_embedding_torch/rotary_embedding_torch.py
3
+ """
4
+
5
+ from __future__ import annotations
6
+ from math import pi, log
7
+
8
+ import torch
9
+ from torch.nn import Module, ModuleList
10
+ from torch.amp import autocast
11
+ from torch import nn, einsum, broadcast_tensors, Tensor
12
+
13
+ from einops import rearrange, repeat
14
+
15
+ from typing import Literal
16
+
17
+ # helper functions
18
+
19
+ def exists(val):
20
+ return val is not None
21
+
22
+ def default(val, d):
23
+ return val if exists(val) else d
24
+
25
+ # broadcat, as tortoise-tts was using it
26
+
27
+ def broadcat(tensors, dim = -1):
28
+ broadcasted_tensors = broadcast_tensors(*tensors)
29
+ return torch.cat(broadcasted_tensors, dim = dim)
30
+
31
+ # rotary embedding helper functions
32
+
33
+ def rotate_half(x):
34
+ x = rearrange(x, '... (d r) -> ... d r', r = 2)
35
+ x1, x2 = x.unbind(dim = -1)
36
+ x = torch.stack((-x2, x1), dim = -1)
37
+ return rearrange(x, '... d r -> ... (d r)')
38
+
39
+ @autocast('cuda', enabled = False)
40
+ def apply_rotary_emb(freqs, t, start_index = 0, scale = 1., seq_dim = -2):
41
+ dtype = t.dtype
42
+
43
+ if t.ndim == 3:
44
+ seq_len = t.shape[seq_dim]
45
+ freqs = freqs[-seq_len:]
46
+
47
+ rot_dim = freqs.shape[-1]
48
+ end_index = start_index + rot_dim
49
+
50
+ assert rot_dim <= t.shape[-1], f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}'
51
+
52
+ # Split t into three parts: left, middle (to be transformed), and right
53
+ t_left = t[..., :start_index]
54
+ t_middle = t[..., start_index:end_index]
55
+ t_right = t[..., end_index:]
56
+
57
+ # Apply rotary embeddings without modifying t in place
58
+ t_transformed = (t_middle * freqs.cos() * scale) + (rotate_half(t_middle) * freqs.sin() * scale)
59
+
60
+ out = torch.cat((t_left, t_transformed, t_right), dim=-1)
61
+
62
+ return out.type(dtype)
63
+
64
+ # learned rotation helpers
65
+
66
+ def apply_learned_rotations(rotations, t, start_index = 0, freq_ranges = None):
67
+ if exists(freq_ranges):
68
+ rotations = einsum('..., f -> ... f', rotations, freq_ranges)
69
+ rotations = rearrange(rotations, '... r f -> ... (r f)')
70
+
71
+ rotations = repeat(rotations, '... n -> ... (n r)', r = 2)
72
+ return apply_rotary_emb(rotations, t, start_index = start_index)
73
+
74
+ # classes
75
+
76
+ class RotaryEmbedding(Module):
77
+ def __init__(
78
+ self,
79
+ dim,
80
+ custom_freqs: Tensor | None = None,
81
+ freqs_for: Literal['lang', 'pixel', 'constant'] = 'lang',
82
+ theta = 10000,
83
+ max_freq = 10,
84
+ num_freqs = 1,
85
+ learned_freq = False,
86
+ use_xpos = False,
87
+ xpos_scale_base = 512,
88
+ interpolate_factor = 1.,
89
+ theta_rescale_factor = 1.,
90
+ seq_before_head_dim = False,
91
+ cache_if_possible = True,
92
+ cache_max_seq_len = 8192
93
+ ):
94
+ super().__init__()
95
+ # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
96
+ # has some connection to NTK literature
97
+ # https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
98
+
99
+ theta *= theta_rescale_factor ** (dim / (dim - 2))
100
+
101
+ self.freqs_for = freqs_for
102
+
103
+ if exists(custom_freqs):
104
+ freqs = custom_freqs
105
+ elif freqs_for == 'lang':
106
+ freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
107
+ elif freqs_for == 'pixel':
108
+ freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
109
+ elif freqs_for == 'spacetime':
110
+ time_freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
111
+ freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
112
+ elif freqs_for == 'constant':
113
+ freqs = torch.ones(num_freqs).float()
114
+
115
+ if freqs_for == 'spacetime':
116
+ self.time_freqs = nn.Parameter(time_freqs, requires_grad = learned_freq)
117
+ self.freqs = nn.Parameter(freqs, requires_grad = learned_freq)
118
+
119
+ self.cache_if_possible = cache_if_possible
120
+ self.cache_max_seq_len = cache_max_seq_len
121
+
122
+ self.register_buffer('cached_freqs', torch.zeros(cache_max_seq_len, dim), persistent = False)
123
+ self.register_buffer('cached_freqs_seq_len', torch.tensor(0), persistent = False)
124
+
125
+ self.learned_freq = learned_freq
126
+
127
+ # dummy for device
128
+
129
+ self.register_buffer('dummy', torch.tensor(0), persistent = False)
130
+
131
+ # default sequence dimension
132
+
133
+ self.seq_before_head_dim = seq_before_head_dim
134
+ self.default_seq_dim = -3 if seq_before_head_dim else -2
135
+
136
+ # interpolation factors
137
+
138
+ assert interpolate_factor >= 1.
139
+ self.interpolate_factor = interpolate_factor
140
+
141
+ # xpos
142
+
143
+ self.use_xpos = use_xpos
144
+
145
+ if not use_xpos:
146
+ return
147
+
148
+ scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
149
+ self.scale_base = xpos_scale_base
150
+
151
+ self.register_buffer('scale', scale, persistent = False)
152
+ self.register_buffer('cached_scales', torch.zeros(cache_max_seq_len, dim), persistent = False)
153
+ self.register_buffer('cached_scales_seq_len', torch.tensor(0), persistent = False)
154
+
155
+ # add apply_rotary_emb as static method
156
+
157
+ self.apply_rotary_emb = staticmethod(apply_rotary_emb)
158
+
159
+ @property
160
+ def device(self):
161
+ return self.dummy.device
162
+
163
+ def get_seq_pos(self, seq_len, device, dtype, offset = 0):
164
+ return (torch.arange(seq_len, device = device, dtype = dtype) + offset) / self.interpolate_factor
165
+
166
+ def rotate_queries_or_keys(self, t, freqs, seq_dim = None, offset = 0, scale = None):
167
+ seq_dim = default(seq_dim, self.default_seq_dim)
168
+
169
+ assert not self.use_xpos or exists(scale), 'you must use `.rotate_queries_and_keys` method instead and pass in both queries and keys, for length extrapolatable rotary embeddings'
170
+
171
+ device, dtype, seq_len = t.device, t.dtype, t.shape[seq_dim]
172
+
173
+ seq = self.get_seq_pos(seq_len, device = device, dtype = dtype, offset = offset)
174
+
175
+ seq_freqs = self.forward(seq, freqs, seq_len = seq_len, offset = offset)
176
+
177
+ if seq_dim == -3:
178
+ seq_freqs = rearrange(seq_freqs, 'n d -> n 1 d')
179
+
180
+ return apply_rotary_emb(seq_freqs, t, scale = default(scale, 1.), seq_dim = seq_dim)
181
+
182
+ def rotate_queries_with_cached_keys(self, q, k, seq_dim = None, offset = 0):
183
+ dtype, device, seq_dim = q.dtype, q.device, default(seq_dim, self.default_seq_dim)
184
+
185
+ q_len, k_len = q.shape[seq_dim], k.shape[seq_dim]
186
+ assert q_len <= k_len
187
+
188
+ q_scale = k_scale = 1.
189
+
190
+ if self.use_xpos:
191
+ seq = self.get_seq_pos(k_len, dtype = dtype, device = device)
192
+
193
+ q_scale = self.get_scale(seq[-q_len:]).type(dtype)
194
+ k_scale = self.get_scale(seq).type(dtype)
195
+
196
+ rotated_q = self.rotate_queries_or_keys(q, seq_dim = seq_dim, scale = q_scale, offset = k_len - q_len + offset)
197
+ rotated_k = self.rotate_queries_or_keys(k, seq_dim = seq_dim, scale = k_scale ** -1)
198
+
199
+ rotated_q = rotated_q.type(q.dtype)
200
+ rotated_k = rotated_k.type(k.dtype)
201
+
202
+ return rotated_q, rotated_k
203
+
204
+ def rotate_queries_and_keys(self, q, k, freqs, seq_dim = None):
205
+ seq_dim = default(seq_dim, self.default_seq_dim)
206
+
207
+ assert self.use_xpos
208
+ device, dtype, seq_len = q.device, q.dtype, q.shape[seq_dim]
209
+
210
+ seq = self.get_seq_pos(seq_len, dtype = dtype, device = device)
211
+
212
+ seq_freqs = self.forward(seq, freqs, seq_len = seq_len)
213
+ scale = self.get_scale(seq, seq_len = seq_len).to(dtype)
214
+
215
+ if seq_dim == -3:
216
+ seq_freqs = rearrange(seq_freqs, 'n d -> n 1 d')
217
+ scale = rearrange(scale, 'n d -> n 1 d')
218
+
219
+ rotated_q = apply_rotary_emb(seq_freqs, q, scale = scale, seq_dim = seq_dim)
220
+ rotated_k = apply_rotary_emb(seq_freqs, k, scale = scale ** -1, seq_dim = seq_dim)
221
+
222
+ rotated_q = rotated_q.type(q.dtype)
223
+ rotated_k = rotated_k.type(k.dtype)
224
+
225
+ return rotated_q, rotated_k
226
+
227
+ def get_scale(
228
+ self,
229
+ t: Tensor,
230
+ seq_len: int | None = None,
231
+ offset = 0
232
+ ):
233
+ assert self.use_xpos
234
+
235
+ should_cache = (
236
+ self.cache_if_possible and
237
+ exists(seq_len) and
238
+ (offset + seq_len) <= self.cache_max_seq_len
239
+ )
240
+
241
+ if (
242
+ should_cache and \
243
+ exists(self.cached_scales) and \
244
+ (seq_len + offset) <= self.cached_scales_seq_len.item()
245
+ ):
246
+ return self.cached_scales[offset:(offset + seq_len)]
247
+
248
+ scale = 1.
249
+ if self.use_xpos:
250
+ power = (t - len(t) // 2) / self.scale_base
251
+ scale = self.scale ** rearrange(power, 'n -> n 1')
252
+ scale = repeat(scale, 'n d -> n (d r)', r = 2)
253
+
254
+ if should_cache and offset == 0:
255
+ self.cached_scales[:seq_len] = scale.detach()
256
+ self.cached_scales_seq_len.copy_(seq_len)
257
+
258
+ return scale
259
+
260
+ def get_axial_freqs(self, *dims):
261
+ Colon = slice(None)
262
+ all_freqs = []
263
+
264
+ for ind, dim in enumerate(dims):
265
+ # only allow pixel freqs for last two dimensions
266
+ use_pixel = (self.freqs_for == 'pixel' or self.freqs_for == 'spacetime') and ind >= len(dims) - 2
267
+ if use_pixel:
268
+ pos = torch.linspace(-1, 1, steps = dim, device = self.device)
269
+ else:
270
+ pos = torch.arange(dim, device = self.device)
271
+
272
+ if self.freqs_for == 'spacetime' and not use_pixel:
273
+ seq_freqs = self.forward(pos, self.time_freqs, seq_len = dim)
274
+ else:
275
+ seq_freqs = self.forward(pos, self.freqs, seq_len = dim)
276
+
277
+ all_axis = [None] * len(dims)
278
+ all_axis[ind] = Colon
279
+
280
+ new_axis_slice = (Ellipsis, *all_axis, Colon)
281
+ all_freqs.append(seq_freqs[new_axis_slice])
282
+
283
+ all_freqs = broadcast_tensors(*all_freqs)
284
+ return torch.cat(all_freqs, dim = -1)
285
+
286
+ @autocast('cuda', enabled = False)
287
+ def forward(
288
+ self,
289
+ t: Tensor,
290
+ freqs: Tensor,
291
+ seq_len = None,
292
+ offset = 0
293
+ ):
294
+ should_cache = (
295
+ self.cache_if_possible and
296
+ not self.learned_freq and
297
+ exists(seq_len) and
298
+ self.freqs_for != 'pixel' and
299
+ (offset + seq_len) <= self.cache_max_seq_len
300
+ )
301
+
302
+ if (
303
+ should_cache and \
304
+ exists(self.cached_freqs) and \
305
+ (offset + seq_len) <= self.cached_freqs_seq_len.item()
306
+ ):
307
+ return self.cached_freqs[offset:(offset + seq_len)].detach()
308
+
309
+ freqs = einsum('..., f -> ... f', t.type(freqs.dtype), freqs)
310
+ freqs = repeat(freqs, '... n -> ... (n r)', r = 2)
311
+
312
+ if should_cache and offset == 0:
313
+ self.cached_freqs[:seq_len] = freqs.detach()
314
+ self.cached_freqs_seq_len.copy_(seq_len)
315
+
316
+ return freqs
open-oasis-master/sample_data/Player729-f153ac423f61-20210806-224813.chunk_000.actions.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc3ea8894f87e2c2c2387dd32b193f27a8a95009397c32b5fbaf8a6f23608b0c
3
+ size 230180
open-oasis-master/sample_data/Player729-f153ac423f61-20210806-224813.chunk_000.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fb1cf3a87be9deca2fec2e946427521a85026ee607cf9281aa87f6df447e4ea
3
+ size 6818283
open-oasis-master/sample_data/snippy-chartreuse-mastiff-f79998db196d-20220401-224517.chunk_001.actions.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:955929d771293156d3f27d295091a978dcd97fdaa78e3a17395ac90c0403004d
3
+ size 230308
open-oasis-master/sample_data/snippy-chartreuse-mastiff-f79998db196d-20220401-224517.chunk_001.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:745b0348a014d943f70ccf6ccba17ad260540caba502b312d972235326003ab0
3
+ size 7109171
open-oasis-master/sample_data/treechop-f153ac423f61-20210916-183423.chunk_000.actions.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46ae60cc9d3a02df949923c707df4c5cd3f49d279aa6500c81f0ef00c14f7747
3
+ size 230176
open-oasis-master/sample_data/treechop-f153ac423f61-20210916-183423.chunk_000.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0ad584df52d7b2636fae5d7a3116f596f25a09ba7d28ff5fc42193105605d92
3
+ size 8716515
open-oasis-master/utils.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Adapted from https://github.com/buoyancy99/diffusion-forcing/blob/main/algorithms/diffusion_forcing/models/utils.py
3
+ Action format derived from VPT https://github.com/openai/Video-Pre-Training
4
+ """
5
+ import math
6
+ import torch
7
+ from torch import nn
8
+ from einops import rearrange, parse_shape
9
+ from typing import Mapping, Sequence
10
+ import torch
11
+ from einops import rearrange
12
+
13
+
14
+ def sigmoid_beta_schedule(timesteps, start=-3, end=3, tau=1, clamp_min=1e-5):
15
+ """
16
+ sigmoid schedule
17
+ proposed in https://arxiv.org/abs/2212.11972 - Figure 8
18
+ better for images > 64x64, when used during training
19
+ """
20
+ steps = timesteps + 1
21
+ t = torch.linspace(0, timesteps, steps, dtype=torch.float32) / timesteps
22
+ v_start = torch.tensor(start / tau).sigmoid()
23
+ v_end = torch.tensor(end / tau).sigmoid()
24
+ alphas_cumprod = (-((t * (end - start) + start) / tau).sigmoid() + v_end) / (v_end - v_start)
25
+ alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
26
+ betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
27
+ return torch.clip(betas, 0, 0.999)
28
+
29
+
30
+ ACTION_KEYS = [
31
+ "inventory",
32
+ "ESC",
33
+ "hotbar.1",
34
+ "hotbar.2",
35
+ "hotbar.3",
36
+ "hotbar.4",
37
+ "hotbar.5",
38
+ "hotbar.6",
39
+ "hotbar.7",
40
+ "hotbar.8",
41
+ "hotbar.9",
42
+ "forward",
43
+ "back",
44
+ "left",
45
+ "right",
46
+ "cameraX",
47
+ "cameraY",
48
+ "jump",
49
+ "sneak",
50
+ "sprint",
51
+ "swapHands",
52
+ "attack",
53
+ "use",
54
+ "pickItem",
55
+ "drop",
56
+ ]
57
+
58
+ def one_hot_actions(actions: Sequence[Mapping[str, int]]) -> torch.Tensor:
59
+ actions_one_hot = torch.zeros(len(actions), len(ACTION_KEYS))
60
+ for i, current_actions in enumerate(actions):
61
+ for j, action_key in enumerate(ACTION_KEYS):
62
+ if action_key.startswith("camera"):
63
+ if action_key == "cameraX":
64
+ value = current_actions["camera"][0]
65
+ elif action_key == "cameraY":
66
+ value = current_actions["camera"][1]
67
+ else:
68
+ raise ValueError(f"Unknown camera action key: {action_key}")
69
+ # NOTE these numbers specific to the camera quantization used in
70
+ # https://github.com/etched-ai/dreamcraft/blob/216e952f795bb3da598639a109bcdba4d2067b69/spark/preprocess_vpt_to_videos_actions.py#L312
71
+ # see method `compress_mouse`
72
+ max_val = 20
73
+ bin_size = 0.5
74
+ num_buckets = int(max_val / bin_size)
75
+ value = (value - num_buckets) / num_buckets
76
+ assert -1 - 1e-3 <= value <= 1 + 1e-3, f"Camera action value must be in [-1, 1], got {value}"
77
+ else:
78
+ value = current_actions[action_key]
79
+ assert 0 <= value <= 1, f"Action value must be in [0, 1] got {value}"
80
+ actions_one_hot[i, j] = value
81
+
82
+ return actions_one_hot
open-oasis-master/vae.py ADDED
@@ -0,0 +1,381 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ References:
3
+ - VQGAN: https://github.com/CompVis/taming-transformers
4
+ - MAE: https://github.com/facebookresearch/mae
5
+ """
6
+ import numpy as np
7
+ import math
8
+ import functools
9
+ from collections import namedtuple
10
+ import torch
11
+ import torch.nn as nn
12
+ import torch.nn.functional as F
13
+ from einops import rearrange
14
+ from timm.models.vision_transformer import Mlp
15
+ from timm.layers.helpers import to_2tuple
16
+ from rotary_embedding_torch import RotaryEmbedding, apply_rotary_emb
17
+ from dit import PatchEmbed
18
+
19
+ class DiagonalGaussianDistribution(object):
20
+ def __init__(self, parameters, deterministic=False, dim=1):
21
+ self.parameters = parameters
22
+ self.mean, self.logvar = torch.chunk(parameters, 2, dim=dim)
23
+ if dim == 1:
24
+ self.dims = [1, 2, 3]
25
+ elif dim == 2:
26
+ self.dims = [1, 2]
27
+ else:
28
+ raise NotImplementedError
29
+ self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
30
+ self.deterministic = deterministic
31
+ self.std = torch.exp(0.5 * self.logvar)
32
+ self.var = torch.exp(self.logvar)
33
+ if self.deterministic:
34
+ self.var = self.std = torch.zeros_like(self.mean).to(
35
+ device=self.parameters.device
36
+ )
37
+
38
+ def sample(self):
39
+ x = self.mean + self.std * torch.randn(self.mean.shape).to(
40
+ device=self.parameters.device
41
+ )
42
+ return x
43
+
44
+ def mode(self):
45
+ return self.mean
46
+
47
+ class Attention(nn.Module):
48
+ def __init__(
49
+ self,
50
+ dim,
51
+ num_heads,
52
+ frame_height,
53
+ frame_width,
54
+ qkv_bias=False,
55
+ attn_drop=0.0,
56
+ proj_drop=0.0,
57
+ is_causal=False,
58
+ ):
59
+ super().__init__()
60
+ self.num_heads = num_heads
61
+ head_dim = dim // num_heads
62
+ self.frame_height = frame_height
63
+ self.frame_width = frame_width
64
+
65
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
66
+ self.attn_drop = attn_drop
67
+ self.proj = nn.Linear(dim, dim)
68
+ self.proj_drop = nn.Dropout(proj_drop)
69
+ self.is_causal = is_causal
70
+
71
+ rotary_freqs = RotaryEmbedding(
72
+ dim=head_dim // 4,
73
+ freqs_for="pixel",
74
+ max_freq=frame_height*frame_width,
75
+ ).get_axial_freqs(frame_height, frame_width)
76
+ self.register_buffer("rotary_freqs", rotary_freqs, persistent=False)
77
+
78
+ def forward(self, x):
79
+ B, N, C = x.shape
80
+ assert N == self.frame_height * self.frame_width
81
+
82
+ qkv = (
83
+ self.qkv(x)
84
+ .reshape(B, N, 3, self.num_heads, C // self.num_heads)
85
+ .permute(2, 0, 3, 1, 4)
86
+ )
87
+ q, k, v = (
88
+ qkv[0],
89
+ qkv[1],
90
+ qkv[2],
91
+ ) # make torchscript happy (cannot use tensor as tuple)
92
+
93
+ if self.rotary_freqs is not None:
94
+ q = rearrange(q, "b h (H W) d -> b h H W d", H=self.frame_height, W=self.frame_width)
95
+ k = rearrange(k, "b h (H W) d -> b h H W d", H=self.frame_height, W=self.frame_width)
96
+ q = apply_rotary_emb(self.rotary_freqs, q)
97
+ k = apply_rotary_emb(self.rotary_freqs, k)
98
+ q = rearrange(q, "b h H W d -> b h (H W) d")
99
+ k = rearrange(k, "b h H W d -> b h (H W) d")
100
+
101
+ attn = F.scaled_dot_product_attention(
102
+ q,
103
+ k,
104
+ v,
105
+ dropout_p=self.attn_drop,
106
+ is_causal=self.is_causal,
107
+ )
108
+ x = attn.transpose(1, 2).reshape(B, N, C)
109
+
110
+ x = self.proj(x)
111
+ x = self.proj_drop(x)
112
+ return x
113
+
114
+
115
+ class AttentionBlock(nn.Module):
116
+ def __init__(
117
+ self,
118
+ dim,
119
+ num_heads,
120
+ frame_height,
121
+ frame_width,
122
+ mlp_ratio=4.0,
123
+ qkv_bias=False,
124
+ drop=0.0,
125
+ attn_drop=0.0,
126
+ attn_causal=False,
127
+ drop_path=0.0,
128
+ act_layer=nn.GELU,
129
+ norm_layer=nn.LayerNorm,
130
+ ):
131
+ super().__init__()
132
+ self.norm1 = norm_layer(dim)
133
+ self.attn = Attention(
134
+ dim,
135
+ num_heads,
136
+ frame_height,
137
+ frame_width,
138
+ qkv_bias=qkv_bias,
139
+ attn_drop=attn_drop,
140
+ proj_drop=drop,
141
+ is_causal=attn_causal,
142
+ )
143
+ # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
144
+ self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
145
+ self.norm2 = norm_layer(dim)
146
+ mlp_hidden_dim = int(dim * mlp_ratio)
147
+ self.mlp = Mlp(
148
+ in_features=dim,
149
+ hidden_features=mlp_hidden_dim,
150
+ act_layer=act_layer,
151
+ drop=drop,
152
+ )
153
+
154
+ def forward(self, x):
155
+ x = x + self.drop_path(self.attn(self.norm1(x)))
156
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
157
+ return x
158
+
159
+
160
+ class AutoencoderKL(nn.Module):
161
+ def __init__(
162
+ self,
163
+ latent_dim,
164
+ input_height=256,
165
+ input_width=256,
166
+ patch_size=16,
167
+ enc_dim=768,
168
+ enc_depth=6,
169
+ enc_heads=12,
170
+ dec_dim=768,
171
+ dec_depth=6,
172
+ dec_heads=12,
173
+ mlp_ratio=4.0,
174
+ norm_layer=functools.partial(nn.LayerNorm, eps=1e-6),
175
+ use_variational=True,
176
+ **kwargs,
177
+ ):
178
+ super().__init__()
179
+ self.input_height = input_height
180
+ self.input_width = input_width
181
+ self.patch_size = patch_size
182
+ self.seq_h = input_height // patch_size
183
+ self.seq_w = input_width // patch_size
184
+ self.seq_len = self.seq_h * self.seq_w
185
+ self.patch_dim = 3 * patch_size**2
186
+
187
+ self.latent_dim = latent_dim
188
+ self.enc_dim = enc_dim
189
+ self.dec_dim = dec_dim
190
+
191
+ # patch
192
+ self.patch_embed = PatchEmbed(input_height, input_width, patch_size, 3, enc_dim)
193
+
194
+ # encoder
195
+ self.encoder = nn.ModuleList(
196
+ [
197
+ AttentionBlock(
198
+ enc_dim,
199
+ enc_heads,
200
+ self.seq_h,
201
+ self.seq_w,
202
+ mlp_ratio,
203
+ qkv_bias=True,
204
+ norm_layer=norm_layer,
205
+ )
206
+ for i in range(enc_depth)
207
+ ]
208
+ )
209
+ self.enc_norm = norm_layer(enc_dim)
210
+
211
+ # bottleneck
212
+ self.use_variational = use_variational
213
+ mult = 2 if self.use_variational else 1
214
+ self.quant_conv = nn.Linear(enc_dim, mult * latent_dim)
215
+ self.post_quant_conv = nn.Linear(latent_dim, dec_dim)
216
+
217
+ # decoder
218
+ self.decoder = nn.ModuleList(
219
+ [
220
+ AttentionBlock(
221
+ dec_dim,
222
+ dec_heads,
223
+ self.seq_h,
224
+ self.seq_w,
225
+ mlp_ratio,
226
+ qkv_bias=True,
227
+ norm_layer=norm_layer,
228
+ )
229
+ for i in range(dec_depth)
230
+ ]
231
+ )
232
+ self.dec_norm = norm_layer(dec_dim)
233
+ self.predictor = nn.Linear(dec_dim, self.patch_dim) # decoder to patch
234
+
235
+ # initialize this weight first
236
+ self.initialize_weights()
237
+
238
+
239
+ def initialize_weights(self):
240
+ # initialization
241
+ # initialize nn.Linear and nn.LayerNorm
242
+ self.apply(self._init_weights)
243
+
244
+ # initialize patch_embed like nn.Linear (instead of nn.Conv2d)
245
+ w = self.patch_embed.proj.weight.data
246
+ nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
247
+
248
+ def _init_weights(self, m):
249
+ if isinstance(m, nn.Linear):
250
+ # we use xavier_uniform following official JAX ViT:
251
+ nn.init.xavier_uniform_(m.weight)
252
+ if isinstance(m, nn.Linear) and m.bias is not None:
253
+ nn.init.constant_(m.bias, 0.0)
254
+ elif isinstance(m, nn.LayerNorm):
255
+ nn.init.constant_(m.bias, 0.0)
256
+ nn.init.constant_(m.weight, 1.0)
257
+
258
+ def patchify(self, x):
259
+ # patchify
260
+ bsz, _, h, w = x.shape
261
+ x = x.reshape(
262
+ bsz,
263
+ 3,
264
+ self.seq_h,
265
+ self.patch_size,
266
+ self.seq_w,
267
+ self.patch_size,
268
+ ).permute(
269
+ [0, 1, 3, 5, 2, 4]
270
+ ) # [b, c, h, p, w, p] --> [b, c, p, p, h, w]
271
+ x = x.reshape(
272
+ bsz, self.patch_dim, self.seq_h, self.seq_w
273
+ ) # --> [b, cxpxp, h, w]
274
+ x = x.permute([0, 2, 3, 1]).reshape(
275
+ bsz, self.seq_len, self.patch_dim
276
+ ) # --> [b, hxw, cxpxp]
277
+ return x
278
+
279
+ def unpatchify(self, x):
280
+ bsz = x.shape[0]
281
+ # unpatchify
282
+ x = x.reshape(bsz, self.seq_h, self.seq_w, self.patch_dim).permute(
283
+ [0, 3, 1, 2]
284
+ ) # [b, h, w, cxpxp] --> [b, cxpxp, h, w]
285
+ x = x.reshape(
286
+ bsz,
287
+ 3,
288
+ self.patch_size,
289
+ self.patch_size,
290
+ self.seq_h,
291
+ self.seq_w,
292
+ ).permute(
293
+ [0, 1, 4, 2, 5, 3]
294
+ ) # [b, c, p, p, h, w] --> [b, c, h, p, w, p]
295
+ x = x.reshape(
296
+ bsz,
297
+ 3,
298
+ self.input_height,
299
+ self.input_width,
300
+ ) # [b, c, hxp, wxp]
301
+ return x
302
+
303
+ def encode(self, x):
304
+ # patchify
305
+ x = self.patch_embed(x)
306
+
307
+ # encoder
308
+ for blk in self.encoder:
309
+ x = blk(x)
310
+ x = self.enc_norm(x)
311
+
312
+ # bottleneck
313
+ moments = self.quant_conv(x)
314
+ if not self.use_variational:
315
+ moments = torch.cat((moments, torch.zeros_like(moments)), 2)
316
+ posterior = DiagonalGaussianDistribution(
317
+ moments, deterministic=(not self.use_variational), dim=2
318
+ )
319
+ return posterior
320
+
321
+ def decode(self, z):
322
+ # bottleneck
323
+ z = self.post_quant_conv(z)
324
+
325
+ # decoder
326
+ for blk in self.decoder:
327
+ z = blk(z)
328
+ z = self.dec_norm(z)
329
+
330
+ # predictor
331
+ z = self.predictor(z)
332
+
333
+ # unpatchify
334
+ dec = self.unpatchify(z)
335
+ return dec
336
+
337
+ def autoencode(self, input, sample_posterior=True):
338
+ posterior = self.encode(input)
339
+ if self.use_variational and sample_posterior:
340
+ z = posterior.sample()
341
+ else:
342
+ z = posterior.mode()
343
+ dec = self.decode(z)
344
+ return dec, posterior, z
345
+
346
+ def get_input(self, batch, k):
347
+ x = batch[k]
348
+ if len(x.shape) == 3:
349
+ x = x[..., None]
350
+ x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
351
+ return x
352
+
353
+ def forward(self, inputs, labels, split="train"):
354
+ rec, post, latent = self.autoencode(inputs)
355
+ return rec, post, latent
356
+
357
+ def get_last_layer(self):
358
+ return self.predictor.weight
359
+
360
+ def ViT_L_20_Shallow_Encoder(**kwargs):
361
+ if "latent_dim" in kwargs:
362
+ latent_dim = kwargs.pop("latent_dim")
363
+ else:
364
+ latent_dim = 16
365
+ return AutoencoderKL(
366
+ latent_dim=latent_dim,
367
+ patch_size=20,
368
+ enc_dim=1024,
369
+ enc_depth=6,
370
+ enc_heads=16,
371
+ dec_dim=1024,
372
+ dec_depth=12,
373
+ dec_heads=16,
374
+ input_height=360,
375
+ input_width=640,
376
+ **kwargs,
377
+ )
378
+
379
+ VAE_models = {
380
+ "vit-l-20-shallow-encoder": ViT_L_20_Shallow_Encoder,
381
+ }