oasis-game / open_oasis_master /rotary_embedding_torch.py
tree3po's picture
Upload 21 files
12aae2e verified
raw
history blame
10.9 kB
"""
Adapted from https://github.com/lucidrains/rotary-embedding-torch/blob/main/rotary_embedding_torch/rotary_embedding_torch.py
"""
from __future__ import annotations
from math import pi, log
import torch
from torch.nn import Module, ModuleList
from torch.amp import autocast
from torch import nn, einsum, broadcast_tensors, Tensor
from einops import rearrange, repeat
from typing import Literal
# helper functions
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
# broadcat, as tortoise-tts was using it
def broadcat(tensors, dim = -1):
broadcasted_tensors = broadcast_tensors(*tensors)
return torch.cat(broadcasted_tensors, dim = dim)
# rotary embedding helper functions
def rotate_half(x):
x = rearrange(x, '... (d r) -> ... d r', r = 2)
x1, x2 = x.unbind(dim = -1)
x = torch.stack((-x2, x1), dim = -1)
return rearrange(x, '... d r -> ... (d r)')
@autocast('cuda', enabled = False)
def apply_rotary_emb(freqs, t, start_index = 0, scale = 1., seq_dim = -2):
dtype = t.dtype
if t.ndim == 3:
seq_len = t.shape[seq_dim]
freqs = freqs[-seq_len:]
rot_dim = freqs.shape[-1]
end_index = start_index + rot_dim
assert rot_dim <= t.shape[-1], f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}'
# Split t into three parts: left, middle (to be transformed), and right
t_left = t[..., :start_index]
t_middle = t[..., start_index:end_index]
t_right = t[..., end_index:]
# Apply rotary embeddings without modifying t in place
t_transformed = (t_middle * freqs.cos() * scale) + (rotate_half(t_middle) * freqs.sin() * scale)
out = torch.cat((t_left, t_transformed, t_right), dim=-1)
return out.type(dtype)
# learned rotation helpers
def apply_learned_rotations(rotations, t, start_index = 0, freq_ranges = None):
if exists(freq_ranges):
rotations = einsum('..., f -> ... f', rotations, freq_ranges)
rotations = rearrange(rotations, '... r f -> ... (r f)')
rotations = repeat(rotations, '... n -> ... (n r)', r = 2)
return apply_rotary_emb(rotations, t, start_index = start_index)
# classes
class RotaryEmbedding(Module):
def __init__(
self,
dim,
custom_freqs: Tensor | None = None,
freqs_for: Literal['lang', 'pixel', 'constant'] = 'lang',
theta = 10000,
max_freq = 10,
num_freqs = 1,
learned_freq = False,
use_xpos = False,
xpos_scale_base = 512,
interpolate_factor = 1.,
theta_rescale_factor = 1.,
seq_before_head_dim = False,
cache_if_possible = True,
cache_max_seq_len = 8192
):
super().__init__()
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
# has some connection to NTK literature
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
theta *= theta_rescale_factor ** (dim / (dim - 2))
self.freqs_for = freqs_for
if exists(custom_freqs):
freqs = custom_freqs
elif freqs_for == 'lang':
freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
elif freqs_for == 'pixel':
freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
elif freqs_for == 'spacetime':
time_freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
elif freqs_for == 'constant':
freqs = torch.ones(num_freqs).float()
if freqs_for == 'spacetime':
self.time_freqs = nn.Parameter(time_freqs, requires_grad = learned_freq)
self.freqs = nn.Parameter(freqs, requires_grad = learned_freq)
self.cache_if_possible = cache_if_possible
self.cache_max_seq_len = cache_max_seq_len
self.register_buffer('cached_freqs', torch.zeros(cache_max_seq_len, dim), persistent = False)
self.register_buffer('cached_freqs_seq_len', torch.tensor(0), persistent = False)
self.learned_freq = learned_freq
# dummy for device
self.register_buffer('dummy', torch.tensor(0), persistent = False)
# default sequence dimension
self.seq_before_head_dim = seq_before_head_dim
self.default_seq_dim = -3 if seq_before_head_dim else -2
# interpolation factors
assert interpolate_factor >= 1.
self.interpolate_factor = interpolate_factor
# xpos
self.use_xpos = use_xpos
if not use_xpos:
return
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
self.scale_base = xpos_scale_base
self.register_buffer('scale', scale, persistent = False)
self.register_buffer('cached_scales', torch.zeros(cache_max_seq_len, dim), persistent = False)
self.register_buffer('cached_scales_seq_len', torch.tensor(0), persistent = False)
# add apply_rotary_emb as static method
self.apply_rotary_emb = staticmethod(apply_rotary_emb)
@property
def device(self):
return self.dummy.device
def get_seq_pos(self, seq_len, device, dtype, offset = 0):
return (torch.arange(seq_len, device = device, dtype = dtype) + offset) / self.interpolate_factor
def rotate_queries_or_keys(self, t, freqs, seq_dim = None, offset = 0, scale = None):
seq_dim = default(seq_dim, self.default_seq_dim)
assert not self.use_xpos or exists(scale), 'you must use `.rotate_queries_and_keys` method instead and pass in both queries and keys, for length extrapolatable rotary embeddings'
device, dtype, seq_len = t.device, t.dtype, t.shape[seq_dim]
seq = self.get_seq_pos(seq_len, device = device, dtype = dtype, offset = offset)
seq_freqs = self.forward(seq, freqs, seq_len = seq_len, offset = offset)
if seq_dim == -3:
seq_freqs = rearrange(seq_freqs, 'n d -> n 1 d')
return apply_rotary_emb(seq_freqs, t, scale = default(scale, 1.), seq_dim = seq_dim)
def rotate_queries_with_cached_keys(self, q, k, seq_dim = None, offset = 0):
dtype, device, seq_dim = q.dtype, q.device, default(seq_dim, self.default_seq_dim)
q_len, k_len = q.shape[seq_dim], k.shape[seq_dim]
assert q_len <= k_len
q_scale = k_scale = 1.
if self.use_xpos:
seq = self.get_seq_pos(k_len, dtype = dtype, device = device)
q_scale = self.get_scale(seq[-q_len:]).type(dtype)
k_scale = self.get_scale(seq).type(dtype)
rotated_q = self.rotate_queries_or_keys(q, seq_dim = seq_dim, scale = q_scale, offset = k_len - q_len + offset)
rotated_k = self.rotate_queries_or_keys(k, seq_dim = seq_dim, scale = k_scale ** -1)
rotated_q = rotated_q.type(q.dtype)
rotated_k = rotated_k.type(k.dtype)
return rotated_q, rotated_k
def rotate_queries_and_keys(self, q, k, freqs, seq_dim = None):
seq_dim = default(seq_dim, self.default_seq_dim)
assert self.use_xpos
device, dtype, seq_len = q.device, q.dtype, q.shape[seq_dim]
seq = self.get_seq_pos(seq_len, dtype = dtype, device = device)
seq_freqs = self.forward(seq, freqs, seq_len = seq_len)
scale = self.get_scale(seq, seq_len = seq_len).to(dtype)
if seq_dim == -3:
seq_freqs = rearrange(seq_freqs, 'n d -> n 1 d')
scale = rearrange(scale, 'n d -> n 1 d')
rotated_q = apply_rotary_emb(seq_freqs, q, scale = scale, seq_dim = seq_dim)
rotated_k = apply_rotary_emb(seq_freqs, k, scale = scale ** -1, seq_dim = seq_dim)
rotated_q = rotated_q.type(q.dtype)
rotated_k = rotated_k.type(k.dtype)
return rotated_q, rotated_k
def get_scale(
self,
t: Tensor,
seq_len: int | None = None,
offset = 0
):
assert self.use_xpos
should_cache = (
self.cache_if_possible and
exists(seq_len) and
(offset + seq_len) <= self.cache_max_seq_len
)
if (
should_cache and \
exists(self.cached_scales) and \
(seq_len + offset) <= self.cached_scales_seq_len.item()
):
return self.cached_scales[offset:(offset + seq_len)]
scale = 1.
if self.use_xpos:
power = (t - len(t) // 2) / self.scale_base
scale = self.scale ** rearrange(power, 'n -> n 1')
scale = repeat(scale, 'n d -> n (d r)', r = 2)
if should_cache and offset == 0:
self.cached_scales[:seq_len] = scale.detach()
self.cached_scales_seq_len.copy_(seq_len)
return scale
def get_axial_freqs(self, *dims):
Colon = slice(None)
all_freqs = []
for ind, dim in enumerate(dims):
# only allow pixel freqs for last two dimensions
use_pixel = (self.freqs_for == 'pixel' or self.freqs_for == 'spacetime') and ind >= len(dims) - 2
if use_pixel:
pos = torch.linspace(-1, 1, steps = dim, device = self.device)
else:
pos = torch.arange(dim, device = self.device)
if self.freqs_for == 'spacetime' and not use_pixel:
seq_freqs = self.forward(pos, self.time_freqs, seq_len = dim)
else:
seq_freqs = self.forward(pos, self.freqs, seq_len = dim)
all_axis = [None] * len(dims)
all_axis[ind] = Colon
new_axis_slice = (Ellipsis, *all_axis, Colon)
all_freqs.append(seq_freqs[new_axis_slice])
all_freqs = broadcast_tensors(*all_freqs)
return torch.cat(all_freqs, dim = -1)
@autocast('cuda', enabled = False)
def forward(
self,
t: Tensor,
freqs: Tensor,
seq_len = None,
offset = 0
):
should_cache = (
self.cache_if_possible and
not self.learned_freq and
exists(seq_len) and
self.freqs_for != 'pixel' and
(offset + seq_len) <= self.cache_max_seq_len
)
if (
should_cache and \
exists(self.cached_freqs) and \
(offset + seq_len) <= self.cached_freqs_seq_len.item()
):
return self.cached_freqs[offset:(offset + seq_len)].detach()
freqs = einsum('..., f -> ... f', t.type(freqs.dtype), freqs)
freqs = repeat(freqs, '... n -> ... (n r)', r = 2)
if should_cache and offset == 0:
self.cached_freqs[:seq_len] = freqs.detach()
self.cached_freqs_seq_len.copy_(seq_len)
return freqs