|
import gradio as gr |
|
from gradio_client import Client |
|
from huggingface_hub import InferenceClient |
|
|
|
import random |
|
models=[ |
|
"facebook/MobileLLM-125M", |
|
"facebook/MobileLLM-350M", |
|
"facebook/MobileLLM-600M", |
|
"facebook/MobileLLM-1B", |
|
] |
|
client_z=[] |
|
|
|
from transformers import pipeline |
|
|
|
|
|
|
|
def load_models(inp,new_models): |
|
if not new_models: |
|
new_models=models |
|
out_box=[gr.Chatbot(),gr.Chatbot(),gr.Chatbot(),gr.Chatbot()] |
|
print(type(inp)) |
|
print(inp) |
|
|
|
client_z.clear() |
|
for z,ea in enumerate(inp): |
|
|
|
client_z.append(pipeline("text-generation", model=new_models[inp[z]], trust_remote_code=True)) |
|
out_box[z]=(gr.update(label=new_models[inp[z]])) |
|
return out_box[0],out_box[1],out_box[2],out_box[3] |
|
def format_prompt_default(message, history): |
|
prompt = "" |
|
if history: |
|
|
|
for user_prompt, bot_response in history: |
|
prompt += f"{user_prompt}\n" |
|
print(prompt) |
|
prompt += f"{bot_response}\n" |
|
print(prompt) |
|
prompt += f"{message}\n" |
|
return prompt |
|
|
|
def format_prompt_gemma(message, history): |
|
prompt = "" |
|
if history: |
|
|
|
for user_prompt, bot_response in history: |
|
prompt += f"{user_prompt}\n" |
|
print(prompt) |
|
prompt += f"{bot_response}\n" |
|
print(prompt) |
|
prompt += f"<start_of_turn>user{message}<end_of_turn><start_of_turn>model" |
|
return prompt |
|
|
|
|
|
def format_prompt_mixtral(message, history): |
|
prompt = "<s>" |
|
if history: |
|
for user_prompt, bot_response in history: |
|
prompt += f"[INST] {user_prompt} [/INST]" |
|
prompt += f" {bot_response}</s> " |
|
prompt += f"[INST] {message} [/INST]" |
|
return prompt |
|
|
|
def format_prompt_choose(message, history, model_name, new_models=None): |
|
if not new_models: |
|
new_models=models |
|
if "gemma" in new_models[model_name].lower() and "it" in new_models[model_name].lower(): |
|
return format_prompt_gemma(message,history) |
|
if "mixtral" in new_models[model_name].lower(): |
|
return format_prompt_mixtral(message,history) |
|
else: |
|
return format_prompt_mixtral(message,history) |
|
|
|
|
|
|
|
mega_hist=[[],[],[],[]] |
|
def chat_inf_tree(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val): |
|
if len(client_choice)>=hid_val: |
|
client=client_z[int(hid_val)-1] |
|
|
|
if history: |
|
mega_hist[hid_val-1]=history |
|
|
|
hist_len=0 |
|
generate_kwargs = dict( |
|
temperature=temp, |
|
max_new_tokens=tokens, |
|
top_p=top_p, |
|
repetition_penalty=rep_p, |
|
do_sample=True, |
|
seed=seed, |
|
) |
|
|
|
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", mega_hist[hid_val-1]) |
|
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) |
|
output = "" |
|
for response in stream: |
|
output += response.token.text |
|
yield [(prompt,output)] |
|
mega_hist[hid_val-1].append((prompt,output)) |
|
yield mega_hist[hid_val-1] |
|
else: |
|
yield None |
|
|
|
|
|
|
|
|
|
def chat_inf_a(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val): |
|
if len(client_choice)>=hid_val: |
|
if system_prompt: |
|
system_prompt=f'{system_prompt}, ' |
|
|
|
client1=gr.load("models/" + models[0]) |
|
if not history: |
|
history = [] |
|
hist_len=0 |
|
generate_kwargs = dict( |
|
temperature=temp, |
|
max_new_tokens=tokens, |
|
top_p=top_p, |
|
repetition_penalty=rep_p, |
|
do_sample=True, |
|
seed=seed, |
|
) |
|
|
|
formatted_prompt = format_prompt_choose(f"{system_prompt}{prompt}", history, client_choice[0]) |
|
stream1 = client1.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) |
|
output = "" |
|
for response in stream1: |
|
output += response.token.text |
|
yield [(prompt,output)] |
|
history.append((prompt,output)) |
|
yield history |
|
else: |
|
yield None |
|
|
|
|
|
def chat_inf_b(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val): |
|
if len(client_choice)>=hid_val: |
|
if system_prompt: |
|
system_prompt=f'{system_prompt}, ' |
|
client2=client_z[int(hid_val)-1] |
|
|
|
if not history: |
|
history = [] |
|
hist_len=0 |
|
generate_kwargs = dict( |
|
temperature=temp, |
|
max_new_tokens=tokens, |
|
top_p=top_p, |
|
repetition_penalty=rep_p, |
|
do_sample=True, |
|
seed=seed, |
|
) |
|
|
|
formatted_prompt = format_prompt_choose(f"{system_prompt}{prompt}", history, client_choice[1]) |
|
stream2 = client2.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) |
|
output = "" |
|
for response in stream2: |
|
output += response.token.text |
|
yield [(prompt,output)] |
|
history.append((prompt,output)) |
|
yield history |
|
else: |
|
yield None |
|
|
|
def chat_inf_c(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val): |
|
if len(client_choice)>=hid_val: |
|
if system_prompt: |
|
system_prompt=f'{system_prompt}, ' |
|
client3=client_z[int(hid_val)-1] |
|
|
|
if not history: |
|
history = [] |
|
hist_len=0 |
|
generate_kwargs = dict( |
|
temperature=temp, |
|
max_new_tokens=tokens, |
|
top_p=top_p, |
|
repetition_penalty=rep_p, |
|
do_sample=True, |
|
seed=seed, |
|
) |
|
|
|
formatted_prompt = format_prompt_choose(f"{system_prompt}{prompt}", history, client_choice[2]) |
|
stream3 = client3.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) |
|
output = "" |
|
for response in stream3: |
|
output += response.token.text |
|
yield [(prompt,output)] |
|
history.append((prompt,output)) |
|
yield history |
|
else: |
|
yield None |
|
|
|
def chat_inf_d(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val): |
|
if len(client_choice)>=hid_val: |
|
if system_prompt: |
|
system_prompt=f'{system_prompt}, ' |
|
client4=client_z[int(hid_val)-1] |
|
|
|
if not history: |
|
history = [] |
|
hist_len=0 |
|
generate_kwargs = dict( |
|
temperature=temp, |
|
max_new_tokens=tokens, |
|
top_p=top_p, |
|
repetition_penalty=rep_p, |
|
do_sample=True, |
|
seed=seed, |
|
) |
|
|
|
formatted_prompt = format_prompt_choose(f"{system_prompt}{prompt}", history, client_choice[3]) |
|
stream4 = client4.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) |
|
output = "" |
|
for response in stream4: |
|
output += response.token.text |
|
yield [(prompt,output)] |
|
history.append((prompt,output)) |
|
yield history |
|
else: |
|
yield None |
|
def add_new_model(inp, cur): |
|
cur.append(inp) |
|
return cur,gr.update(choices=[z for z in cur]) |
|
def load_new(models=models): |
|
return models |
|
|
|
def clear_fn(): |
|
return None,None,None,None,None,None |
|
rand_val=random.randint(1,1111111111111111) |
|
def check_rand(inp,val): |
|
if inp==True: |
|
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1,1111111111111111)) |
|
else: |
|
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val)) |
|
|
|
with gr.Blocks() as app: |
|
new_models=gr.State([]) |
|
gr.HTML("""<center><h1 style='font-size:xx-large;'>Chatbot Model Compare</h1>""") |
|
with gr.Row(): |
|
chat_a = gr.Chatbot(height=500) |
|
chat_b = gr.Chatbot(height=500) |
|
with gr.Row(): |
|
chat_c = gr.Chatbot(height=500) |
|
chat_d = gr.Chatbot(height=500) |
|
with gr.Group(): |
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
inp = gr.Textbox(label="Prompt") |
|
sys_inp = gr.Textbox(label="System Prompt (optional)") |
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
btn = gr.Button("Chat") |
|
with gr.Column(scale=1): |
|
with gr.Group(): |
|
stop_btn=gr.Button("Stop") |
|
clear_btn=gr.Button("Clear") |
|
client_choice=gr.Dropdown(label="Models",type='index', choices=[c for c in models],max_choices=4,multiselect=True,interactive=True) |
|
add_model=gr.Textbox(label="New Model") |
|
add_btn=gr.Button("Add Model") |
|
with gr.Column(scale=1): |
|
with gr.Group(): |
|
rand = gr.Checkbox(label="Random Seed", value=True) |
|
seed=gr.Slider(label="Seed", minimum=1, maximum=1111111111111111,step=1, value=rand_val) |
|
tokens = gr.Slider(label="Max new tokens",value=3840,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens") |
|
temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.9) |
|
top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.9) |
|
rep_p=gr.Slider(label="Repetition Penalty",step=0.1, minimum=0.1, maximum=2.0, value=1.0) |
|
|
|
hid1=gr.Number(value=1,visible=False) |
|
hid2=gr.Number(value=2,visible=False) |
|
hid3=gr.Number(value=3,visible=False) |
|
hid4=gr.Number(value=4,visible=False) |
|
|
|
app.load(load_new,None,new_models) |
|
add_btn.click(add_new_model,[add_model,new_models],[new_models,client_choice]) |
|
client_choice.change(load_models,[client_choice,new_models],[chat_a,chat_b,chat_c,chat_d]) |
|
|
|
|
|
|
|
|
|
go1=btn.click(check_rand,[rand,seed],seed).then(chat_inf_a,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,hid1],chat_a) |
|
go2=btn.click(check_rand,[rand,seed],seed).then(chat_inf_b,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,hid2],chat_b) |
|
go3=btn.click(check_rand,[rand,seed],seed).then(chat_inf_c,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,hid3],chat_c) |
|
go4=btn.click(check_rand,[rand,seed],seed).then(chat_inf_d,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,hid4],chat_d) |
|
|
|
stop_btn.click(None,None,None,cancels=[go1,go2,go3,go4]) |
|
clear_btn.click(clear_fn,None,[inp,sys_inp,chat_a,chat_b,chat_c,chat_d]) |
|
app.queue(default_concurrency_limit=10).launch() |
|
|
|
|