File size: 11,718 Bytes
692f4a4
a3833ec
dfcc13c
a3833ec
f0b399b
692f4a4
 
 
 
 
 
 
53be636
 
692f4a4
53be636
692f4a4
 
 
 
 
 
 
 
 
 
53be636
 
692f4a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3208b6e
 
692f4a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3208b6e
692f4a4
 
34e9362
98b114d
34e9362
692f4a4
 
 
 
 
 
 
 
 
 
 
 
 
4c6dc7c
692f4a4
 
 
 
 
 
3208b6e
 
692f4a4
 
 
3208b6e
692f4a4
 
3208b6e
 
692f4a4
 
 
 
 
 
 
 
 
 
 
 
 
34e9362
692f4a4
 
 
 
 
 
3208b6e
 
692f4a4
 
3208b6e
692f4a4
 
3208b6e
 
692f4a4
 
 
 
 
 
 
 
 
 
 
 
 
34e9362
692f4a4
 
 
 
 
 
3208b6e
 
692f4a4
 
3208b6e
692f4a4
 
3208b6e
 
692f4a4
 
 
 
 
 
 
 
 
 
 
 
 
34e9362
692f4a4
 
 
 
 
 
3208b6e
 
692f4a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import gradio as gr
from gradio_client import Client
from huggingface_hub import InferenceClient

import random
models=[
    "facebook/MobileLLM-125M",
    "facebook/MobileLLM-350M",
    "facebook/MobileLLM-600M",
    "facebook/MobileLLM-1B",
]
client_z=[]
# Use a pipeline as a high-level helper
from transformers import pipeline

#pipe = pipeline("text-generation", model="facebook/MobileLLM-125M", trust_remote_code=True)

def load_models(inp,new_models):
    if not new_models:
        new_models=models
    out_box=[gr.Chatbot(),gr.Chatbot(),gr.Chatbot(),gr.Chatbot()]
    print(type(inp))
    print(inp)
    #print(new_models[inp[0]])
    client_z.clear()
    for z,ea in enumerate(inp):
        #client_z.append(InferenceClient(new_models[inp[z]]))
        client_z.append(pipeline("text-generation", model=new_models[inp[z]], trust_remote_code=True))
        out_box[z]=(gr.update(label=new_models[inp[z]]))
    return out_box[0],out_box[1],out_box[2],out_box[3]
def format_prompt_default(message, history):
    prompt = ""
    if history:
        #<start_of_turn>userHow does the brain work?<end_of_turn><start_of_turn>model
        for user_prompt, bot_response in history:
            prompt += f"{user_prompt}\n"
            print(prompt)
            prompt += f"{bot_response}\n"
            print(prompt)
    prompt += f"{message}\n"
    return prompt

def format_prompt_gemma(message, history):
    prompt = ""
    if history:
        #<start_of_turn>userHow does the brain work?<end_of_turn><start_of_turn>model
        for user_prompt, bot_response in history:
            prompt += f"{user_prompt}\n"
            print(prompt)
            prompt += f"{bot_response}\n"
            print(prompt)
    prompt += f"<start_of_turn>user{message}<end_of_turn><start_of_turn>model"
    return prompt

   
def format_prompt_mixtral(message, history):
    prompt = "<s>"
    if history:
        for user_prompt, bot_response in history:
            prompt += f"[INST] {user_prompt} [/INST]"
            prompt += f" {bot_response}</s> "
    prompt += f"[INST] {message} [/INST]"
    return prompt

def format_prompt_choose(message, history, model_name, new_models=None):
    if not new_models:
        new_models=models
    if "gemma" in new_models[model_name].lower() and "it" in new_models[model_name].lower():
        return format_prompt_gemma(message,history)
    if "mixtral" in new_models[model_name].lower():
        return format_prompt_mixtral(message,history)
    else:
        return format_prompt_mixtral(message,history)



mega_hist=[[],[],[],[]]
def chat_inf_tree(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val):
    if len(client_choice)>=hid_val:
        client=client_z[int(hid_val)-1]
        #client = gr.load()
        if history:
            mega_hist[hid_val-1]=history
            #history = []
            hist_len=0
        generate_kwargs = dict(
            temperature=temp,
            max_new_tokens=tokens,
            top_p=top_p,
            repetition_penalty=rep_p,
            do_sample=True,
            seed=seed,
        )
        #formatted_prompt=prompt   
        formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", mega_hist[hid_val-1])
        stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
        output = ""
        for response in stream:
            output += response.token.text
            yield [(prompt,output)]
        mega_hist[hid_val-1].append((prompt,output))
        yield mega_hist[hid_val-1]
    else:
        yield None




def chat_inf_a(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val):
    if len(client_choice)>=hid_val:
        if system_prompt:
            system_prompt=f'{system_prompt}, '
        client1=client_z[int(hid_val)-1]
        client1 = pipeline("text-generation", model=new_models[0], trust_remote_code=True)
        #client1=gr.load("models/" + models[0])
        if not history:
            history = []
            hist_len=0
        generate_kwargs = dict(
            temperature=temp,
            max_new_tokens=tokens,
            top_p=top_p,
            repetition_penalty=rep_p,
            do_sample=True,
            seed=seed,
        )
        #formatted_prompt=prompt   
        formatted_prompt = format_prompt_choose(f"{system_prompt}{prompt}", history, client_choice[0])
        stream1 = client1(prompt)
        output = ""
        for response in stream1:
            output += response.token.text
            yield [(prompt,output)]
        history.append((prompt,output))
        yield history
    else:
        yield None


def chat_inf_b(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val):
    if len(client_choice)>=hid_val:
        if system_prompt:
            system_prompt=f'{system_prompt}, '        
        client2=client_z[int(hid_val)-1]
        #client2=gr.load("models/" + models[1])
        if not history:
            history = []
            hist_len=0
        generate_kwargs = dict(
            temperature=temp,
            max_new_tokens=tokens,
            top_p=top_p,
            repetition_penalty=rep_p,
            do_sample=True,
            seed=seed,
        )
        #formatted_prompt=prompt   
        formatted_prompt = format_prompt_choose(f"{system_prompt}{prompt}", history, client_choice[1])
        stream2 = client2(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
        output = ""
        for response in stream2:
            output += response.token.text
            yield [(prompt,output)]
        history.append((prompt,output))
        yield history
    else:
        yield None

def chat_inf_c(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val):
    if len(client_choice)>=hid_val:
        if system_prompt:
            system_prompt=f'{system_prompt}, '           
        client3=client_z[int(hid_val)-1]
        #client3=gr.load("models/" + models[2])
        if not history:
            history = []
            hist_len=0
        generate_kwargs = dict(
            temperature=temp,
            max_new_tokens=tokens,
            top_p=top_p,
            repetition_penalty=rep_p,
            do_sample=True,
            seed=seed,
        )
        #formatted_prompt=prompt   
        formatted_prompt = format_prompt_choose(f"{system_prompt}{prompt}", history, client_choice[2])
        stream3 = client3(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
        output = ""
        for response in stream3:
            output += response.token.text
            yield [(prompt,output)]
        history.append((prompt,output))
        yield history
    else:
        yield None

def chat_inf_d(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val):
    if len(client_choice)>=hid_val:
        if system_prompt:
            system_prompt=f'{system_prompt}, '           
        client4=client_z[int(hid_val)-1]
        #client4=gr.load("models/" + models[3])
        if not history:
            history = []
            hist_len=0
        generate_kwargs = dict(
            temperature=temp,
            max_new_tokens=tokens,
            top_p=top_p,
            repetition_penalty=rep_p,
            do_sample=True,
            seed=seed,
        )
        #formatted_prompt=prompt   
        formatted_prompt = format_prompt_choose(f"{system_prompt}{prompt}", history, client_choice[3])
        stream4 = client4(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
        output = ""
        for response in stream4:
            output += response.token.text
            yield [(prompt,output)]
        history.append((prompt,output))
        yield history
    else:
        yield None        
def add_new_model(inp, cur):
    cur.append(inp)
    return cur,gr.update(choices=[z for z in cur])
def load_new(models=models):
    return models
    
def clear_fn():
    return None,None,None,None,None,None
rand_val=random.randint(1,1111111111111111)
def check_rand(inp,val):
    if inp==True:
        return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1,1111111111111111))
    else:
        return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))

with gr.Blocks() as app:
    new_models=gr.State([])
    gr.HTML("""<center><h1 style='font-size:xx-large;'>Chatbot Model Compare</h1>""")
    with gr.Row():
        chat_a = gr.Chatbot(height=500)
        chat_b = gr.Chatbot(height=500)
    with gr.Row():
        chat_c = gr.Chatbot(height=500)
        chat_d = gr.Chatbot(height=500)
    with gr.Group():
        with gr.Row():
            with gr.Column(scale=3):
                inp = gr.Textbox(label="Prompt")
                sys_inp = gr.Textbox(label="System Prompt (optional)")
                with gr.Row():
                    with gr.Column(scale=2):
                        btn = gr.Button("Chat")
                    with gr.Column(scale=1):
                        with gr.Group():
                            stop_btn=gr.Button("Stop")
                            clear_btn=gr.Button("Clear")                
                client_choice=gr.Dropdown(label="Models",type='index', choices=[c for c in models],max_choices=4,multiselect=True,interactive=True)
                add_model=gr.Textbox(label="New Model")
                add_btn=gr.Button("Add Model")
            with gr.Column(scale=1):
                with gr.Group():
                    rand = gr.Checkbox(label="Random Seed", value=True)
                    seed=gr.Slider(label="Seed", minimum=1, maximum=1111111111111111,step=1, value=rand_val)
                    tokens = gr.Slider(label="Max new tokens",value=3840,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens")
                    temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.9)
                    top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.9)
                    rep_p=gr.Slider(label="Repetition Penalty",step=0.1, minimum=0.1, maximum=2.0, value=1.0)

    hid1=gr.Number(value=1,visible=False)        
    hid2=gr.Number(value=2,visible=False)        
    hid3=gr.Number(value=3,visible=False)        
    hid4=gr.Number(value=4,visible=False)    

    app.load(load_new,None,new_models)
    add_btn.click(add_new_model,[add_model,new_models],[new_models,client_choice])
    client_choice.change(load_models,[client_choice,new_models],[chat_a,chat_b,chat_c,chat_d])

    #im_go=im_btn.click(get_screenshot,[chat_b,im_height,im_width,chatblock,theme,wait_time],img)
    #chat_sub=inp.submit(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p],chat_b)
    
    go1=btn.click(check_rand,[rand,seed],seed).then(chat_inf_a,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,hid1],chat_a)
    go2=btn.click(check_rand,[rand,seed],seed).then(chat_inf_b,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,hid2],chat_b)
    go3=btn.click(check_rand,[rand,seed],seed).then(chat_inf_c,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,hid3],chat_c)
    go4=btn.click(check_rand,[rand,seed],seed).then(chat_inf_d,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,hid4],chat_d)
    
    stop_btn.click(None,None,None,cancels=[go1,go2,go3,go4])
    clear_btn.click(clear_fn,None,[inp,sys_inp,chat_a,chat_b,chat_c,chat_d])
app.queue(default_concurrency_limit=10).launch()