import gradio as gr from transformers import pipeline import PyPDF2 import markdown import matplotlib.pyplot as plt import io import base64 import torch from fpdf import FPDF import os import tempfile import glob # Preload models models = { "distilbert-base-uncased-distilled-squad": "distilbert-base-uncased-distilled-squad", "roberta-base-squad2": "deepset/roberta-base-squad2", "bert-large-uncased-whole-word-masking-finetuned-squad": "bert-large-uncased-whole-word-masking-finetuned-squad", "albert-base-v2": "twmkn9/albert-base-v2-squad2", "xlm-roberta-large-squad2": "deepset/xlm-roberta-large-squad2" } loaded_models = {} # Ensure we're using the CPU if GPU isn't available or necessary device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def load_model(model_name): if model_name not in loaded_models: loaded_models[model_name] = pipeline("question-answering", model=models[model_name], device=0 if torch.cuda.is_available() else -1) return loaded_models[model_name] def generate_score_chart(score): plt.figure(figsize=(6, 4)) plt.bar(["Confidence Score"], [score], color='skyblue') plt.ylim(0, 1) plt.ylabel("Score") plt.title("Confidence Score") buf = io.BytesIO() plt.savefig(buf, format='png') plt.close() buf.seek(0) return base64.b64encode(buf.getvalue()).decode() def highlight_relevant_text(context, start, end): highlighted_text = ( context[:start] + '' + context[start:end] + '' + context[end:] ) return highlighted_text def answer_question(model_name, file, question, status): status = "Loading model..." model = load_model(model_name) if file is not None: file_name = file.name if file_name.endswith(".pdf"): pdf_reader = PyPDF2.PdfReader(file) context = "" for page_num in range(len(pdf_reader.pages)): context += pdf_reader.pages[page_num].extract_text() elif file_name.endswith(".md"): context = file.read().decode('utf-8') context = markdown.markdown(context) else: context = file.read().decode('utf-8') else: context = "" result = model(question=question, context=context) answer = result['answer'] score = result['score'] start = result['start'] end = result['end'] # Highlight relevant text highlighted_context = highlight_relevant_text(context, start, end) # Generate the score chart score_chart = generate_score_chart(score) # Explain score score_explanation = f"The confidence score ranges from 0 to 1, where a higher score indicates higher confidence in the answer's correctness. In this case, the score is {score:.2f}. A score closer to 1 implies the model is very confident about the answer." # Generate the PDF report pdf_report = generate_pdf_report(question, answer, f"{score:.2f}", score_explanation, score_chart, highlighted_context) status = "Model loaded" return highlighted_context, f"{score:.2f}", score_explanation, score_chart, pdf_report, status # Define the Gradio interface with gr.Blocks() as interface: gr.Markdown( """ # Question Answering System Upload a document (text, PDF, or Markdown) and ask questions to get answers based on the context. **Supported File Types**: `.txt`, `.pdf`, `.md` """) with gr.Row(): model_dropdown = gr.Dropdown( choices=list(models.keys()), label="Select Model", value="distilbert-base-uncased-distilled-squad" ) with gr.Row(): file_input = gr.File(label="Upload Document", file_types=["text", "pdf", "markdown"]) question_input = gr.Textbox(lines=2, placeholder="Enter your question here...", label="Question") with gr.Row(): answer_output = gr.HTML(label="Highlighted Answer") score_output = gr.Textbox(label="Confidence Score") explanation_output = gr.Textbox(label="Score Explanation") chart_output = gr.Image(label="Score Chart") pdf_output = gr.File(label="Download PDF Report") with gr.Row(): submit_button = gr.Button("Submit") status_output = gr.Markdown(value="") def on_submit(model_name, file, question): return answer_question(model_name, file, question, status="Loading model...") submit_button.click( on_submit, inputs=[model_dropdown, file_input, question_input], outputs=[answer_output, score_output, explanation_output, chart_output, pdf_output, status_output] ) if __name__ == "__main__": interface.launch(share=True)