tosin2013's picture
Update app.py
ad9f9f3 verified
raw
history blame
6.73 kB
import gradio as gr
from transformers import pipeline
import PyPDF2
import markdown
import matplotlib.pyplot as plt
import io
import base64
import torch
from fpdf import FPDF
import os
import tempfile
import glob
# Preload models
models = {
"distilbert-base-uncased-distilled-squad": "distilbert-base-uncased-distilled-squad",
"roberta-base-squad2": "deepset/roberta-base-squad2",
"bert-large-uncased-whole-word-masking-finetuned-squad": "bert-large-uncased-whole-word-masking-finetuned-squad",
"albert-base-v2": "twmkn9/albert-base-v2-squad2",
"xlm-roberta-large-squad2": "deepset/xlm-roberta-large-squad2"
}
loaded_models = {}
# Ensure we're using the CPU if GPU isn't available or necessary
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def load_model(model_name):
if model_name not in loaded_models:
loaded_models[model_name] = pipeline("question-answering", model=models[model_name], device=0 if torch.cuda.is_available() else -1)
return loaded_models[model_name]
def generate_score_chart(score):
plt.figure(figsize=(6, 4))
plt.bar(["Confidence Score"], [score], color='skyblue')
plt.ylim(0, 1)
plt.ylabel("Score")
plt.title("Confidence Score")
buf = io.BytesIO()
plt.savefig(buf, format='png')
plt.close()
buf.seek(0)
return base64.b64encode(buf.getvalue()).decode()
def highlight_relevant_text(context, start, end):
highlighted_text = (
context[:start] +
'<mark style="background-color: yellow;">' +
context[start:end] +
'</mark>' +
context[end:]
)
return highlighted_text
def find_system_font():
# Adjust this function to find a suitable font
font_dirs = ["/usr/share/fonts", "/usr/local/share/fonts"]
for font_dir in font_dirs:
ttf_files = glob.glob(os.path.join(font_dir, "**/NotoSans*.ttf"), recursive=True)
if ttf_files:
return ttf_files[0] # Return the first found NotoSans font
raise FileNotFoundError("No suitable TTF font file found in system font directories.")
def generate_pdf_report(question, answer, score, score_explanation, score_chart, highlighted_context):
pdf = FPDF()
pdf.add_page()
# Find and use a comprehensive Unicode font like NotoSans
font_path = find_system_font()
pdf.add_font("NotoSans", "", font_path)
pdf.set_font("NotoSans", size=12)
pdf.multi_cell(0, 10, f"Question: {question}")
pdf.ln()
pdf.set_font("NotoSans", size=12)
pdf.multi_cell(0, 10, f"Answer: {answer}")
pdf.ln()
pdf.set_font("NotoSans", size=12)
pdf.multi_cell(0, 10, f"Confidence Score: {score}")
pdf.ln()
pdf.set_font("NotoSans", size=12)
pdf.multi_cell(0, 10, f"Score Explanation: {score_explanation}")
pdf.ln()
pdf.set_font("NotoSans", size=12)
pdf.multi_cell(0, 10, "Highlighted Context:")
pdf.ln()
pdf.set_font("NotoSans", size=10)
pdf.multi_cell(0, 10, highlighted_context)
pdf.ln()
# Handle the image as a temporary file
score_chart_image = io.BytesIO(base64.b64decode(score_chart))
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmpfile:
tmpfile.write(score_chart_image.read())
tmpfile.flush()
tmpfile.close()
pdf.image(tmpfile.name, x=10, y=pdf.get_y(), w=100)
# Save PDF to memory
pdf_output = io.BytesIO()
pdf.output(pdf_output)
pdf_output.seek(0)
# Clean up temporary file
os.remove(tmpfile.name)
return pdf_output
def answer_question(model_name, file, question, status):
status = "Loading model..."
model = load_model(model_name)
if file is not None:
file_name = file.name
if file_name.endswith(".pdf"):
pdf_reader = PyPDF2.PdfReader(file)
context = ""
for page_num in range(len(pdf_reader.pages)):
context += pdf_reader.pages[page_num].extract_text()
elif file_name.endswith(".md"):
context = file.read().decode('utf-8')
context = markdown.markdown(context)
else:
context = file.read().decode('utf-8')
else:
context = ""
result = model(question=question, context=context)
answer = result['answer']
score = result['score']
start = result['start']
end = result['end']
# Highlight relevant text
highlighted_context = highlight_relevant_text(context, start, end)
# Generate the score chart
score_chart = generate_score_chart(score)
# Explain score
score_explanation = f"The confidence score ranges from 0 to 1, where a higher score indicates higher confidence in the answer's correctness. In this case, the score is {score:.2f}. A score closer to 1 implies the model is very confident about the answer."
# Generate the PDF report
pdf_report = generate_pdf_report(question, answer, f"{score:.2f}", score_explanation, score_chart, highlighted_context)
status = "Model loaded"
return highlighted_context, f"{score:.2f}", score_explanation, score_chart, pdf_report, status
# Define the Gradio interface
with gr.Blocks() as interface:
gr.Markdown(
"""
# Question Answering System
Upload a document (text, PDF, or Markdown) and ask questions to get answers based on the context.
**Supported File Types**: `.txt`, `.pdf`, `.md`
""")
with gr.Row():
model_dropdown = gr.Dropdown(
choices=list(models.keys()),
label="Select Model",
value="distilbert-base-uncased-distilled-squad"
)
with gr.Row():
file_input = gr.File(label="Upload Document", file_types=["text", "pdf", "markdown"])
question_input = gr.Textbox(lines=2, placeholder="Enter your question here...", label="Question")
with gr.Row():
answer_output = gr.HTML(label="Highlighted Answer")
score_output = gr.Textbox(label="Confidence Score")
explanation_output = gr.Textbox(label="Score Explanation")
chart_output = gr.Image(label="Score Chart")
pdf_output = gr.File(label="Download PDF Report")
with gr.Row():
submit_button = gr.Button("Submit")
status_output = gr.Markdown(value="")
def on_submit(model_name, file, question):
return answer_question(model_name, file, question, status="Loading model...")
submit_button.click(
on_submit,
inputs=[model_dropdown, file_input, question_input],
outputs=[answer_output, score_output, explanation_output, chart_output, pdf_output, status_output]
)
if __name__ == "__main__":
interface.launch(share=True)