nougata / app.py
ysharma's picture
ysharma HF staff
Update app.py
632f752
raw
history blame
1.45 kB
import gradio as gr
import subprocess
def nougat_ocr(file_name):
# CLI Command to run
cli_command = [
'nougat',
'--out', '/output',
'pdf', f'{file_name}',
'--checkpoint', '/nougat'
]
# Run the command and get .mmd file in an output folder
subprocess.run(cli_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
return
def predict(pdf_file):
print(f"temporary file - {pdf_file.name}")
pdf_name = pdf_file.name.split('/')[-1].split('.')[0]
print(f"pdf file name - {pdf_name}")
#! Get prediction for a PDF using nougat
nougat_ocr(pdf_file.name)
# Open the multimarkdown (.mmd) file for reading
with open(f'/output/{pdf_name}.mmd', 'r') as file:
content = file.read()
return content
with gr.Blocks() as demo:
gr.HTML("<h1>Nougat: Neural Optical Understanding for Academic Documents<h1>")
gr.HTML("<h3>Lukas Blecher et al. <a href='https://arxiv.org/pdf/2308.13418.pdf' target='_blank'>Paper</a>, <a href='https://facebookresearch.github.io/nougat/'>Project</a></h3>")
with gr.Row():
pdf_file = gr.File(label='Upload a PDF', scale=1)
mkd = gr.Markdown('<h2><center><i>OR</i></center></h2>',scale=1)
pdf_link = gr.Textbox(placeholder='Enter an arxiv link here', label='Provide a link', scale=1)
btn = gr.Button()
parsed_output = gr.Markdown()
btn.click(predict, pdf_file, parsed_output )
demo.queue()
demo.launch(debug=True)