|
import gradio as gr |
|
import subprocess |
|
|
|
|
|
def nougat_ocr(file_name): |
|
print('******* inside nougat_ocr *******') |
|
|
|
cli_command = [ |
|
'nougat', |
|
'--out', 'output', |
|
'pdf', f'{file_name}', |
|
'--checkpoint', 'nougat' |
|
] |
|
|
|
|
|
subprocess.run(cli_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) |
|
return |
|
|
|
|
|
def predict(pdf_file): |
|
print('******* inside predict *******') |
|
print(f"temporary file - {pdf_file.name}") |
|
pdf_name = pdf_file.name.split('/')[-1].split('.')[0] |
|
print(f"pdf file name - {pdf_name}") |
|
|
|
|
|
nougat_ocr(pdf_file.name) |
|
print("BAACCKKK") |
|
|
|
|
|
with open(f'output/{pdf_name}.mmd', 'r') as file: |
|
content = file.read() |
|
|
|
return content |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.HTML("<h1><center>Nougat: Neural Optical Understanding for Academic Documents<center><h1>") |
|
gr.HTML("<h3><center>Lukas Blecher et al. <a href='https://arxiv.org/pdf/2308.13418.pdf' target='_blank'>Paper</a>, <a href='https://facebookresearch.github.io/nougat/'>Project</a><center></h3>") |
|
|
|
with gr.Row(): |
|
pdf_file = gr.File(label='Upload a PDF', scale=1) |
|
mkd = gr.Markdown('<h2><center><i>OR</i></center></h2>',scale=1) |
|
pdf_link = gr.Textbox(placeholder='Enter an arxiv link here', label='Provide a link', scale=1) |
|
|
|
btn = gr.Button() |
|
parsed_output = gr.Markdown() |
|
|
|
btn.click(predict, pdf_file, parsed_output ) |
|
|
|
demo.queue() |
|
demo.launch(debug=True) |
|
|
|
|