import os import torch print(torch.__version__) torch_ver, cuda_ver = torch.__version__.split('+') os.system(f'pip install mmcv-full==1.4.0 -f https://download.openmmlab.com/mmcv/dist/{cuda_ver}/torch{torch_ver}/index.html --no-cache-dir') os.system('cd src/ndl_layout/mmdetection && python setup.py bdist_wheel && pip install dist/*.whl') os.system('wget https://lab.ndl.go.jp/dataset/ndlocr/text_recognition/mojilist_NDL.txt -P ./src/text_recognition/models') os.system('wget https://lab.ndl.go.jp/dataset/ndlocr/text_recognition/ndlenfixed64-mj0-synth1.pth -P ./src/text_recognition/models') os.system('wget https://lab.ndl.go.jp/dataset/ndlocr/ndl_layout/ndl_layout_config.py -P ./src/ndl_layout/models') os.system('wget https://lab.ndl.go.jp/dataset/ndlocr/ndl_layout/epoch_140_all_eql_bt.pth -P ./src/ndl_layout/models') os.system('wget https://lab.ndl.go.jp/dataset/ndlocr/separate_pages_ssd/weights.hdf5 -P ./src/separate_pages_ssd/ssd_tools') os.system("wget https://i.imgur.com/fSL1CGG.jpg") os.environ["PYTHONPATH"]=os.environ["PYTHONPATH"]+":"+f"{os.getcwd()}/src/text_recognition/deep-text-recognition-benchmark" import gradio as gr from PIL import Image from uuid import uuid4 from pathlib import Path def inference(im): dir_name = uuid4() Path(f'{dir_name}/img').mkdir(parents=True) im.save(f'{dir_name}/img/image.jpg') os.system(f'python main.py infer {dir_name}/img/image.jpg {dir_name}_output -s f -i') image_path = f'{dir_name}_output/image/pred_img/image_L.jpg' if Path(f'{dir_name}_output/image/pred_img/image_R.jpg').exists(): image_L = Image.open(f'{dir_name}_output/image/pred_img/image_L.jpg') image_R = Image.open(f'{dir_name}_output/image/pred_img/image_R.jpg') dst = Image.new('RGB', (image_L.width + image_R.width, image_L.height)) dst.paste(image_L, (0, 0)) dst.paste(image_R, (image_L.width, 0)) dst.save(f'{dir_name}_output/image/pred_img/image_LR.jpg') image_path = f'{dir_name}_output/image/pred_img/image_LR.jpg' with open(f'{dir_name}_output/image/txt/image_main.txt') as f: return image_path, f.read() title = "NDLOCR" description = "Gradio demo for NDLOCR. NDLOCR is a text recognition (OCR) Program." article = "
" gr.Interface( inference, gr.inputs.Image(label='image', type='pil'), ['image', 'text'], title=title, description=description, article=article, examples=['fSL1CGG.jpg', 'b3b3963f-d577-4a30-acb9-0b395d4d87f7.jpeg', '8016ed5e-c0c7-4979-b6c6-d6b6c3945d7f.jpeg'] ).launch(enable_queue=True, cache_examples=True)