Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,11 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
import os
|
5 |
from together import Together
|
6 |
import base64
|
|
|
|
|
7 |
|
8 |
# Initialize Together client
|
9 |
client = Together()
|
@@ -16,61 +18,70 @@ def encode_image(image_path):
|
|
16 |
with open(image_path, "rb") as image_file:
|
17 |
return base64.b64encode(image_file.read()).decode('utf-8')
|
18 |
|
19 |
-
def
|
20 |
-
|
|
|
|
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
"url": f"data:image/jpeg;base64,{base64_image}"
|
33 |
-
},
|
34 |
-
},
|
35 |
-
],
|
36 |
-
}
|
37 |
-
]
|
38 |
|
39 |
stream = client.chat.completions.create(
|
40 |
model="meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo",
|
41 |
messages=messages,
|
|
|
42 |
stream=True,
|
43 |
)
|
44 |
|
45 |
-
|
46 |
for chunk in stream:
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
def chat(message, history):
|
52 |
-
user_message = message["text"]
|
53 |
-
files = message.get("files", [])
|
54 |
-
|
55 |
-
if files and files[0]["file"].path:
|
56 |
-
image_path = files[0]["file"].path
|
57 |
-
response = call_llama_vision_api(user_message, image_path)
|
58 |
-
else:
|
59 |
-
response = "I'm sorry, but I need an image to analyze. Please upload an image along with your question."
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
)
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
if __name__ == "__main__":
|
76 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import requests
|
4 |
import os
|
5 |
from together import Together
|
6 |
import base64
|
7 |
+
from threading import Thread
|
8 |
+
import time
|
9 |
|
10 |
# Initialize Together client
|
11 |
client = Together()
|
|
|
18 |
with open(image_path, "rb") as image_file:
|
19 |
return base64.b64encode(image_file.read()).decode('utf-8')
|
20 |
|
21 |
+
def bot_streaming(message, history, max_new_tokens=250):
|
22 |
+
txt = message["text"]
|
23 |
+
messages = []
|
24 |
+
images = []
|
25 |
|
26 |
+
for i, msg in enumerate(history):
|
27 |
+
if isinstance(msg[0], tuple):
|
28 |
+
messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{encode_image(msg[0][0])}"}}]})
|
29 |
+
messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
|
30 |
+
elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
|
31 |
+
pass
|
32 |
+
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str):
|
33 |
+
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
|
34 |
+
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
|
35 |
|
36 |
+
if len(message["files"]) == 1:
|
37 |
+
if isinstance(message["files"][0], str): # examples
|
38 |
+
image_path = message["files"][0]
|
39 |
+
else: # regular input
|
40 |
+
image_path = message["files"][0]["path"]
|
41 |
+
messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{encode_image(image_path)}"}}]})
|
42 |
+
else:
|
43 |
+
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
stream = client.chat.completions.create(
|
46 |
model="meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo",
|
47 |
messages=messages,
|
48 |
+
max_tokens=max_new_tokens,
|
49 |
stream=True,
|
50 |
)
|
51 |
|
52 |
+
buffer = ""
|
53 |
for chunk in stream:
|
54 |
+
if chunk.choices[0].delta.content is not None:
|
55 |
+
buffer += chunk.choices[0].delta.content
|
56 |
+
time.sleep(0.01)
|
57 |
+
yield buffer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
demo = gr.ChatInterface(
|
60 |
+
fn=bot_streaming,
|
61 |
+
title="Multimodal Llama",
|
62 |
+
examples=[
|
63 |
+
[{"text": "Which era does this piece belong to? Give details about the era.", "files":["./examples/rococo.jpg"]}, 200],
|
64 |
+
[{"text": "Where do the droughts happen according to this diagram?", "files":["./examples/weather_events.png"]}, 250],
|
65 |
+
[{"text": "What happens when you take out white cat from this chain?", "files":["./examples/ai2d_test.jpg"]}, 250],
|
66 |
+
[{"text": "Which company was this invoice addressed to?", "files":["./examples/invoice.png"]}, 250],
|
67 |
+
[{"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./examples/wat_arun.jpg"]}, 250],
|
68 |
+
],
|
69 |
+
textbox=gr.MultimodalTextbox(),
|
70 |
+
additional_inputs=[
|
71 |
+
gr.Slider(
|
72 |
+
minimum=10,
|
73 |
+
maximum=500,
|
74 |
+
value=250,
|
75 |
+
step=10,
|
76 |
+
label="Maximum number of new tokens to generate",
|
77 |
+
)
|
78 |
+
],
|
79 |
+
cache_examples=False,
|
80 |
+
description="Try Multimodal Llama by Meta with the Together API in this demo. Upload an image, and start chatting about it, or simply try one of the examples below.",
|
81 |
+
stop_btn="Stop Generation",
|
82 |
+
fill_height=True,
|
83 |
+
multimodal=True
|
84 |
+
)
|
85 |
|
86 |
if __name__ == "__main__":
|
87 |
+
demo.launch(debug=True)
|