hassanelmghari's picture
Update app.py
293451d verified
import gradio as gr
from PIL import Image
import os
from together import Together
import base64
import io
# Initialize Together client
client = None
def initialize_client(api_key=None):
global client
if api_key:
os.environ["TOGETHER_API_KEY"] = api_key
if "TOGETHER_API_KEY" in os.environ:
client = Together()
else:
raise ValueError("Please provide a Together API Key")
def encode_image(image_path):
with Image.open(image_path) as img:
buffered = io.BytesIO()
img.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def bot_streaming(
message, history, together_api_key, max_new_tokens=250, temperature=0.7
):
if client is None:
try:
initialize_client(together_api_key)
except Exception as e:
history.append((message, f"Error initializing client: {str(e)}"))
yield history
return
prompt = "You are a helpful AI assistant. Analyze the image provided (if any) and respond to the user's query or comment."
messages = [{"role": "system", "content": prompt}]
# Add history to messages
for user_msg, assistant_msg in history:
if isinstance(user_msg, str): # Text message
messages.append(
{"role": "user", "content": [{"type": "text", "text": user_msg}]}
)
elif isinstance(user_msg, dict): # Image message
image_base64 = encode_image(user_msg["image_path"])
messages.append(
{
"role": "user",
"content": [
{"type": "text", "text": user_msg.get("text", "")},
{
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{image_base64}"
},
},
],
}
)
messages.append(
{"role": "assistant", "content": [{"type": "text", "text": assistant_msg}]}
)
# Prepare the current message
user_message_content = []
if isinstance(message, dict):
if message.get("text"):
user_message_content.append({"type": "text", "text": message["text"]})
if message.get("files") and len(message["files"]) > 0:
image_path = message["files"][0]
image_base64 = encode_image(image_path)
user_message_content.append(
{
"type": "image_url",
"image_url": {"url": f"data:image/png;base64,{image_base64}"},
}
)
elif isinstance(message, str):
user_message_content.append({"type": "text", "text": message})
current_message = {"role": "user", "content": user_message_content}
messages.append(current_message)
# Add the user's message to the history
user_display_message = message["text"] if isinstance(message, dict) else message
history = history + [(user_display_message, "")]
try:
stream = client.chat.completions.create(
model="meta-llama/Llama-Vision-Free",
messages=messages,
max_tokens=max_new_tokens,
temperature=temperature,
stream=True,
)
response = ""
for chunk in stream:
if (
chunk.choices
and chunk.choices[0].delta
and chunk.choices[0].delta.content is not None
):
response += chunk.choices[0].delta.content
# Update the assistant's response in the history
history[-1] = (user_display_message, response)
yield history
if not response:
history[-1] = (
user_display_message,
"No response generated. Please try again.",
)
yield history
except Exception as e:
error_message = (
"The image is too large. Please try with a smaller image or compress the existing one."
if "Request Entity Too Large" in str(e)
else f"An error occurred: {str(e)}"
)
history[-1] = (user_display_message, error_message)
yield history
# The rest of your Gradio interface code remains the same
with gr.Blocks() as demo:
gr.Markdown("# Meta Llama-3.2-11B-Vision-Instruct (FREE)")
gr.Markdown(
"Try the new Llama 3.2 11B Vision API by Meta for free through Together AI. Upload an image, and start chatting about it. Just paste in your Together AI API key and get started!"
)
with gr.Row():
together_api_key = gr.Textbox(
label="Together API Key",
placeholder="Enter your TOGETHER_API_KEY here",
type="password",
)
with gr.Row():
max_new_tokens = gr.Slider(
minimum=10,
maximum=10000,
value=250,
step=10,
label="Maximum number of new tokens",
)
temperature = gr.Number(
value=0.7, minimum=0, maximum=1, step=0.1, label="Temperature"
)
chatbot = gr.Chatbot()
msg = gr.MultimodalTextbox(label="")
clear = gr.Button("Clear")
msg.submit(
bot_streaming,
[msg, chatbot, together_api_key, max_new_tokens, temperature],
chatbot,
)
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.launch(debug=True)