File size: 6,472 Bytes
2073e54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os

import gradio as gr
import requests
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, AutoModelForSeq2SeqLM
from langchain.text_splitter import CharacterTextSplitter
from langchain.indexes import VectorstoreIndexCreator
from langchain.document_loaders import TextLoader
import textwrap
from langchain.chains.question_answering import load_qa_chain
from langchain import HuggingFaceHub, HuggingFacePipeline, OpenAI
from sentence_transformers import SentenceTransformer

from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA



os.environ["OPENAI_API_KEY"] = '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'

class ChatGPT:
   def __init__(self):
       loaders = [TextLoader(os.path.join('./docs', fn), encoding='utf8') for fn in os.listdir('./docs')]
       # loader = TextLoader('./docs/test7.txt', encoding='utf-8')
       # loader = TextLoader('./state_of_the_union.txt', encoding='utf-8')
       # documents = loader.load()
       # print(wrap_text_preserve_newlines(str(documents[0])))
       text_splitter = CharacterTextSplitter(
           separator="\n",
           chunk_size=1000,
           chunk_overlap=0,
           length_function=len,
       )
       embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
       index = VectorstoreIndexCreator(
           embedding=embeddings,
           text_splitter=CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)).from_loaders(loaders)
       # self.docs = text_splitter.split_documents(documents)
       # print(len(docs))
       # embeddings = HuggingFaceEmbeddings(model_name='keepitreal/vietnamese-sbert')

       # embeddings = HuggingFaceEmbeddings()
       # llm = HuggingFaceHub(repo_id="vinai/phobert-base")
       # model = AutoModelForCausalLM.from_pretrained("vinai/phobert-base")
       # tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base")
       # self.db = FAISS.from_documents(self.docs, embeddings)
       # pipe = pipeline(
       #     "text-generation",
       #     model=model,
       #     tokenizer=tokenizer
       # )
       # local_llm = HuggingFacePipeline(pipeline=pipe)
       self.chain = RetrievalQA.from_chain_type(llm=OpenAI(temperature=0.0),
                                           chain_type="stuff",
                                           retriever=index.vectorstore.as_retriever(search_kwargs={"k": 3}),
                                           input_key="question")
       # self.chain = load_qa_chain(llm=OpenAI(temperature=0.0), chain_type="stuff")
       # self.chain = load_qa_chain(llm=local_llm, chain_type="stuff")

   def query(self,question):
       # docs = self.db.similarity_search(question)
       # return (self.chain.run(input_documents=docs, question=question))
       return (self.chain.run(question))


def wrap_text_preserve_newlines(text, width=200):
    # Split the input text into lines based on newline characters
    lines = text.split('\\n')

    # Wrap each line individually
    wrapped_lines = [textwrap.fill(line, width=width) for line in lines]

    # Join the wrapped lines back together using newline characters
    wrapped_text = '\n'.join(wrapped_lines)

    return wrapped_text

os.environ["HUGGINGFACEHUB_API_TOKEN"] = "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"
url = "https://raw.githubusercontent.com/hwchase17/langchain/master/docs/modules/state_of_the_union.txt"
# url = "https://raw.githubusercontent.com/NTT123/Vietnamese-Text-To-Speech-Dataset/master/collections.txt"
# url = "https://raw.githubusercontent.com/NTT123/Vietnamese-Text-To-Speech-Dataset/master/collections.txt"


# res = requests.get(url)
# with open("state_of_the_union.txt", "w") as f:
#   f.write(res.text)

# Document Loader

# loader = TextLoader('./collections.txt', encoding='utf-8')
# # loader = TextLoader('./state_of_the_union.txt', encoding='utf-8')
# documents = loader.load()
# # print(wrap_text_preserve_newlines(str(documents[0])))
# text_splitter = CharacterTextSplitter(
#     separator = "\n",
#     chunk_size = 1000,
#     chunk_overlap  = 200,
#     length_function = len,
# )
# docs = text_splitter.split_documents(documents)
# # print(len(docs))
# # embeddings = HuggingFaceEmbeddings(model_name='keepitreal/vietnamese-sbert')
# embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
# # embeddings = HuggingFaceEmbeddings()
#
#
# db = FAISS.from_documents(docs, embeddings)
#
# # query = "giờ làm việc của công ty"
# # docs = db.similarity_search(query)
#
#
# # print(wrap_text_preserve_newlines(str(docs[0].page_content)))
#
#
# # print(wrap_text_preserve_newlines(str(docs[1].page_content)))
# # model_id = 'google/flan-t5-base'# go for a smaller model if you dont have the VRAM
# model_id = 'VietAI/gpt-neo-1.3B-vietnamese-news'# go for a smaller model if you dont have the VRAM
# # tokenizer = AutoTokenizer.from_pretrained(model_id)
# # # model = AutoModelForSeq2SeqLM.from_pretrained(model_id,load_in_8bit=False,low_cpu_mem_usage=True)
# # model = AutoModelForCausalLM.from_pretrained(model_id,load_in_8bit=False,low_cpu_mem_usage=True)
# #
# # pipe = pipeline(
# #     "text-generation",
# #     model=model,
# #     tokenizer=tokenizer,
# #     pad_token_id=20000,
# #     temperature=0.9,
# #     max_length=500
# # )
# # llm=HuggingFaceHub(repo_id="VietAI/gpt-neo-1.3B-vietnamese-news", model_kwargs={"temperature":0.9,"top_k":20,"do_sample":True,"max_length":500})
# # local_llm = HuggingFacePipeline(pipeline=pipe)
# # llm=HuggingFaceHub(repo_id="google/flan-t5-base", model_kwargs={"temperature":0, "max_length":512})
# # llm=HuggingFaceHub(repo_id="VietAI/gpt-neo-1.3B-vietnamese-news", model_kwargs={"temperature":0.1, "max_length":500})
# chain = load_qa_chain(llm=OpenAI(temperature=0.5), chain_type="stuff")
# query = "được quyền lợi gì khi đẻ con"
# # query = "What did the president say about the Economy"
# docs = db.similarity_search(query)
#
# print(chain.run(input_documents=docs,question=query))

chatgpt = ChatGPT()




def chatbot(input_text):

    response = chatgpt.query(input_text)
    return response

iface = gr.Interface(fn=chatbot,
                     inputs=gr.components.Textbox(lines=7, label="Enter your text"),
                     outputs="text",
                     title="Custom-trained AI Chatbot")
iface.launch(share=True)