File size: 2,128 Bytes
bdf9962
 
 
a5d57e1
 
 
 
 
 
fc91aa0
 
bdf9962
fc91aa0
bdf9962
cb2237b
bdf9962
bd0e8c7
bdf9962
 
 
 
 
 
a5d57e1
bdf9962
 
 
cb2237b
 
bdf9962
 
 
 
 
 
 
 
 
 
a5d57e1
 
 
 
 
bdf9962
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import gradio as gr
from PIL import Image

examples = [
    [Image.open("examples/in0.jpg"), Image.open("examples/out0.webp")],
    [Image.open("examples/in1.webp"), Image.open("examples/out1.png")],
    [Image.open("examples/in2.jpg"), Image.open("examples/out2.png")],
    [Image.open("examples/in3.jpg"), Image.open("examples/out3.png")],
]

def create_gradio_interface(process_and_generate):
    def gradio_process_and_generate(input_image, prompt, num_images, cfg_weight):
        return process_and_generate(input_image, prompt, num_images, cfg_weight)

    explanation = """[Janus 1.3B](https://huggingface.co/deepseek-ai/Janus-1.3B) uses differerent visual encoders for understanding and generation.

<img src="https://huggingface.co/spaces/thomasgauthier/HowJanusSeesItself/raw/main/images/janus_architecture.svg" alt="Janus Model Architecture">

Here, by feeding the model an image and then asking it to generate that same image, we visualize the model's ability to translate input (understanding) embedding space to generative embedding space."""

    with gr.Blocks() as demo:
        gr.Markdown("# How Janus-1.3B sees itself")

        dummy = gr.Image(type="filepath", label="Generated Image", visible=False)
        with gr.Row():
            input_image = gr.Image(type="filepath", label="Input Image")
            output_images = gr.Gallery(label="Generated Images", columns=2, rows=2)
        
        gr.Markdown(explanation)
        prompt = gr.Textbox(label="Prompt", value="Exactly what is shown in the image.")
        num_images = gr.Slider(minimum=1, maximum=12, value=12, step=1, label="Number of Images to Generate")
        cfg_weight = gr.Slider(minimum=1, maximum=10, value=5, step=0.1, label="CFG Weight")
        generate_btn = gr.Button("Generate", variant="primary", size="lg")
        
        generate_btn.click(
            fn=gradio_process_and_generate,
            inputs=[input_image, prompt, num_images, cfg_weight],
            outputs=output_images
        )
        gr.Examples(
            examples=examples,
            inputs=[input_image, dummy]
    )
        

    return demo