# Copyright 2022 Garena Online Private Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import List import torch from torch import Tensor from torch.optim.optimizer import Optimizer class Adan(Optimizer): """ Implements a pytorch variant of Adan Adan was proposed in Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models[J].arXiv preprint arXiv:2208.06677, 2022. https://arxiv.org/abs/2208.06677 Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups. lr (float, optional): learning rate. (default: 1e-3) betas (Tuple[float, float, flot], optional): coefficients used for first- and second-order moments. (default: (0.98, 0.92, 0.99)) eps (float, optional): term added to the denominator to improve numerical stability. (default: 1e-8) weight_decay (float, optional): decoupled weight decay (L2 penalty) (default: 0) max_grad_norm (float, optional): value used to clip global grad norm (default: 0.0 no clip) no_prox (bool): how to perform the decoupled weight decay (default: False) foreach (bool): if True would use torch._foreach implementation. It's faster but uses slightly more memory. (default: True) """ def __init__( self, params, lr=1e-3, betas=(0.98, 0.92, 0.99), eps=1e-8, weight_decay=0.0, max_grad_norm=0.0, no_prox=False, foreach: bool = True, ): if not 0.0 <= max_grad_norm: raise ValueError("Invalid Max grad norm: {}".format(max_grad_norm)) if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) if not 0.0 <= betas[2] < 1.0: raise ValueError("Invalid beta parameter at index 2: {}".format(betas[2])) defaults = dict( lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, max_grad_norm=max_grad_norm, no_prox=no_prox, foreach=foreach, ) super().__init__(params, defaults) def __setstate__(self, state): super(Adan, self).__setstate__(state) for group in self.param_groups: group.setdefault("no_prox", False) @torch.no_grad() def restart_opt(self): for group in self.param_groups: group["step"] = 0 for p in group["params"]: if p.requires_grad: state = self.state[p] # State initialization # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(p) # Exponential moving average of squared gradient values state["exp_avg_sq"] = torch.zeros_like(p) # Exponential moving average of gradient difference state["exp_avg_diff"] = torch.zeros_like(p) @torch.no_grad() def step(self, closure=None): """Performs a single optimization step.""" loss = None if closure is not None: with torch.enable_grad(): loss = closure() if self.defaults["max_grad_norm"] > 0: device = self.param_groups[0]["params"][0].device global_grad_norm = torch.zeros(1, device=device) max_grad_norm = torch.tensor(self.defaults["max_grad_norm"], device=device) for group in self.param_groups: for p in group["params"]: if p.grad is not None: grad = p.grad global_grad_norm.add_(grad.pow(2).sum()) global_grad_norm = torch.sqrt(global_grad_norm) clip_global_grad_norm = torch.clamp( max_grad_norm / (global_grad_norm + group["eps"]), max=1.0 ).item() else: clip_global_grad_norm = 1.0 for group in self.param_groups: params_with_grad = [] grads = [] exp_avgs = [] exp_avg_sqs = [] exp_avg_diffs = [] neg_pre_grads = [] beta1, beta2, beta3 = group["betas"] # assume same step across group now to simplify things # per parameter step can be easily support # by making it tensor, or pass list into kernel if "step" in group: group["step"] += 1 else: group["step"] = 1 bias_correction1 = 1.0 - beta1 ** group["step"] bias_correction2 = 1.0 - beta2 ** group["step"] bias_correction3 = 1.0 - beta3 ** group["step"] for p in group["params"]: if p.grad is None: continue params_with_grad.append(p) grads.append(p.grad) state = self.state[p] if len(state) == 0: state["exp_avg"] = torch.zeros_like(p) state["exp_avg_sq"] = torch.zeros_like(p) state["exp_avg_diff"] = torch.zeros_like(p) if "neg_pre_grad" not in state or group["step"] == 1: state["neg_pre_grad"] = p.grad.clone().mul_(-clip_global_grad_norm) exp_avgs.append(state["exp_avg"]) exp_avg_sqs.append(state["exp_avg_sq"]) exp_avg_diffs.append(state["exp_avg_diff"]) neg_pre_grads.append(state["neg_pre_grad"]) kwargs = dict( params=params_with_grad, grads=grads, exp_avgs=exp_avgs, exp_avg_sqs=exp_avg_sqs, exp_avg_diffs=exp_avg_diffs, neg_pre_grads=neg_pre_grads, beta1=beta1, beta2=beta2, beta3=beta3, bias_correction1=bias_correction1, bias_correction2=bias_correction2, bias_correction3_sqrt=math.sqrt(bias_correction3), lr=group["lr"], weight_decay=group["weight_decay"], eps=group["eps"], no_prox=group["no_prox"], clip_global_grad_norm=clip_global_grad_norm, ) if group["foreach"]: _multi_tensor_adan(**kwargs) else: _single_tensor_adan(**kwargs) return loss def _single_tensor_adan( params: List[Tensor], grads: List[Tensor], exp_avgs: List[Tensor], exp_avg_sqs: List[Tensor], exp_avg_diffs: List[Tensor], neg_pre_grads: List[Tensor], *, beta1: float, beta2: float, beta3: float, bias_correction1: float, bias_correction2: float, bias_correction3_sqrt: float, lr: float, weight_decay: float, eps: float, no_prox: bool, clip_global_grad_norm: Tensor, ): for i, param in enumerate(params): grad = grads[i] exp_avg = exp_avgs[i] exp_avg_sq = exp_avg_sqs[i] exp_avg_diff = exp_avg_diffs[i] neg_grad_or_diff = neg_pre_grads[i] grad.mul_(clip_global_grad_norm) # for memory saving, we use `neg_grad_or_diff` # to get some temp variable in a inplace way neg_grad_or_diff.add_(grad) exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) # m_t exp_avg_diff.mul_(beta2).add_(neg_grad_or_diff, alpha=1 - beta2) # diff_t neg_grad_or_diff.mul_(beta2).add_(grad) exp_avg_sq.mul_(beta3).addcmul_( neg_grad_or_diff, neg_grad_or_diff, value=1 - beta3 ) # n_t denom = ((exp_avg_sq).sqrt() / bias_correction3_sqrt).add_(eps) step_size_diff = lr * beta2 / bias_correction2 step_size = lr / bias_correction1 if no_prox: param.mul_(1 - lr * weight_decay) param.addcdiv_(exp_avg, denom, value=-step_size) param.addcdiv_(exp_avg_diff, denom, value=-step_size_diff) else: param.addcdiv_(exp_avg, denom, value=-step_size) param.addcdiv_(exp_avg_diff, denom, value=-step_size_diff) param.div_(1 + lr * weight_decay) neg_grad_or_diff.zero_().add_(grad, alpha=-1.0) def _multi_tensor_adan( params: List[Tensor], grads: List[Tensor], exp_avgs: List[Tensor], exp_avg_sqs: List[Tensor], exp_avg_diffs: List[Tensor], neg_pre_grads: List[Tensor], *, beta1: float, beta2: float, beta3: float, bias_correction1: float, bias_correction2: float, bias_correction3_sqrt: float, lr: float, weight_decay: float, eps: float, no_prox: bool, clip_global_grad_norm: Tensor, ): if len(params) == 0: return torch._foreach_mul_(grads, clip_global_grad_norm) # for memory saving, we use `neg_pre_grads` # to get some temp variable in a inplace way torch._foreach_add_(neg_pre_grads, grads) torch._foreach_mul_(exp_avgs, beta1) torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1) # m_t torch._foreach_mul_(exp_avg_diffs, beta2) torch._foreach_add_(exp_avg_diffs, neg_pre_grads, alpha=1 - beta2) # diff_t torch._foreach_mul_(neg_pre_grads, beta2) torch._foreach_add_(neg_pre_grads, grads) torch._foreach_mul_(exp_avg_sqs, beta3) torch._foreach_addcmul_( exp_avg_sqs, neg_pre_grads, neg_pre_grads, value=1 - beta3 ) # n_t denom = torch._foreach_sqrt(exp_avg_sqs) torch._foreach_div_(denom, bias_correction3_sqrt) torch._foreach_add_(denom, eps) step_size_diff = lr * beta2 / bias_correction2 step_size = lr / bias_correction1 if no_prox: torch._foreach_mul_(params, 1 - lr * weight_decay) torch._foreach_addcdiv_(params, exp_avgs, denom, value=-step_size) torch._foreach_addcdiv_(params, exp_avg_diffs, denom, value=-step_size_diff) else: torch._foreach_addcdiv_(params, exp_avgs, denom, value=-step_size) torch._foreach_addcdiv_(params, exp_avg_diffs, denom, value=-step_size_diff) torch._foreach_div_(params, 1 + lr * weight_decay) torch._foreach_zero_(neg_pre_grads) torch._foreach_add_(neg_pre_grads, grads, alpha=-1.0)