Spaces:
Runtime error
Runtime error
# | |
# Copyright (C) 2023, Inria | |
# GRAPHDECO research group, https://team.inria.fr/graphdeco | |
# All rights reserved. | |
# | |
# This software is free for non-commercial, research and evaluation use | |
# under the terms of the LICENSE.md file. | |
# | |
# For inquiries contact [email protected] | |
# | |
from gaussiansplatting.scene.cameras import Camera | |
import numpy as np | |
from gaussiansplatting.utils.general_utils import PILtoTorch | |
from gaussiansplatting.utils.graphics_utils import fov2focal | |
WARNED = False | |
def loadCam(args, id, cam_info, resolution_scale): | |
orig_w, orig_h = cam_info.image.size | |
if args.resolution in [1, 2, 4, 8]: | |
resolution = round(orig_w/(resolution_scale * args.resolution)), round(orig_h/(resolution_scale * args.resolution)) | |
else: # should be a type that converts to float | |
if args.resolution == -1: | |
if orig_w > 1600: | |
global WARNED | |
if not WARNED: | |
print("[ INFO ] Encountered quite large input images (>1.6K pixels width), rescaling to 1.6K.\n " | |
"If this is not desired, please explicitly specify '--resolution/-r' as 1") | |
WARNED = True | |
global_down = orig_w / 1600 | |
else: | |
global_down = 1 | |
else: | |
global_down = orig_w / args.resolution | |
scale = float(global_down) * float(resolution_scale) | |
resolution = (int(orig_w / scale), int(orig_h / scale)) | |
resized_image_rgb = PILtoTorch(cam_info.image, resolution) | |
gt_image = resized_image_rgb[:3, ...] | |
loaded_mask = None | |
if resized_image_rgb.shape[1] == 4: | |
loaded_mask = resized_image_rgb[3:4, ...] | |
return Camera(colmap_id=cam_info.uid, R=cam_info.R, T=cam_info.T, | |
FoVx=cam_info.FovX, FoVy=cam_info.FovY, | |
image=gt_image, gt_alpha_mask=loaded_mask, | |
image_name=cam_info.image_name, uid=id, data_device=args.data_device) | |
def cameraList_from_camInfos(cam_infos, resolution_scale, args): | |
camera_list = [] | |
for id, c in enumerate(cam_infos): | |
camera_list.append(loadCam(args, id, c, resolution_scale)) | |
return camera_list | |
def camera_to_JSON(id, camera : Camera): | |
Rt = np.zeros((4, 4)) | |
Rt[:3, :3] = camera.R.transpose() | |
Rt[:3, 3] = camera.T | |
Rt[3, 3] = 1.0 | |
W2C = np.linalg.inv(Rt) | |
pos = W2C[:3, 3] | |
rot = W2C[:3, :3] | |
serializable_array_2d = [x.tolist() for x in rot] | |
camera_entry = { | |
'id' : id, | |
'img_name' : camera.image_name, | |
'width' : camera.width, | |
'height' : camera.height, | |
'position': pos.tolist(), | |
'rotation': serializable_array_2d, | |
'fy' : fov2focal(camera.FovY, camera.height), | |
'fx' : fov2focal(camera.FovX, camera.width) | |
} | |
return camera_entry | |