thewhole's picture
Upload 245 files
2fa4776
raw
history blame
3.3 kB
from dataclasses import dataclass
import torch
import torch.nn as nn
from threestudio.utils.config import parse_structured
from threestudio.utils.misc import get_device, load_module_weights
from threestudio.utils.typing import *
class Configurable:
@dataclass
class Config:
pass
def __init__(self, cfg: Optional[dict] = None) -> None:
super().__init__()
self.cfg = parse_structured(self.Config, cfg)
class Updateable:
def do_update_step(
self, epoch: int, global_step: int, on_load_weights: bool = False
):
for attr in self.__dir__():
if attr.startswith("_"):
continue
try:
module = getattr(self, attr)
except:
continue # ignore attributes like property, which can't be retrived using getattr?
if isinstance(module, Updateable):
module.do_update_step(
epoch, global_step, on_load_weights=on_load_weights
)
self.update_step(epoch, global_step, on_load_weights=on_load_weights)
def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False):
# override this method to implement custom update logic
# if on_load_weights is True, you should be careful doing things related to model evaluations,
# as the models and tensors are not guarenteed to be on the same device
pass
def update_if_possible(module: Any, epoch: int, global_step: int) -> None:
if isinstance(module, Updateable):
module.do_update_step(epoch, global_step)
class BaseObject(Updateable):
@dataclass
class Config:
pass
cfg: Config # add this to every subclass of BaseObject to enable static type checking
def __init__(
self, cfg: Optional[Union[dict, DictConfig]] = None, *args, **kwargs
) -> None:
super().__init__()
self.cfg = parse_structured(self.Config, cfg)
self.device = get_device()
self.configure(*args, **kwargs)
def configure(self, *args, **kwargs) -> None:
pass
class BaseModule(nn.Module, Updateable):
@dataclass
class Config:
weights: Optional[str] = None
cfg: Config # add this to every subclass of BaseModule to enable static type checking
def __init__(
self, cfg: Optional[Union[dict, DictConfig]] = None, *args, **kwargs
) -> None:
super().__init__()
self.cfg = parse_structured(self.Config, cfg)
self.device = get_device()
self.configure(*args, **kwargs)
if self.cfg.weights is not None:
# format: path/to/weights:module_name
weights_path, module_name = self.cfg.weights.split(":")
state_dict, epoch, global_step = load_module_weights(
weights_path, module_name=module_name, map_location="cpu"
)
self.load_state_dict(state_dict)
self.do_update_step(
epoch, global_step, on_load_weights=True
) # restore states
# dummy tensor to indicate model state
self._dummy: Float[Tensor, "..."]
self.register_buffer("_dummy", torch.zeros(0).float(), persistent=False)
def configure(self, *args, **kwargs) -> None:
pass