Spaces:
Runtime error
Runtime error
# Copyright 2022 Garena Online Private Limited | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from typing import List | |
import torch | |
from torch import Tensor | |
from torch.optim.optimizer import Optimizer | |
class Adan(Optimizer): | |
""" | |
Implements a pytorch variant of Adan | |
Adan was proposed in | |
Adan: Adaptive Nesterov Momentum Algorithm for | |
Faster Optimizing Deep Models[J].arXiv preprint arXiv:2208.06677, 2022. | |
https://arxiv.org/abs/2208.06677 | |
Arguments: | |
params (iterable): iterable of parameters to optimize or | |
dicts defining parameter groups. | |
lr (float, optional): learning rate. (default: 1e-3) | |
betas (Tuple[float, float, flot], optional): coefficients used for | |
first- and second-order moments. (default: (0.98, 0.92, 0.99)) | |
eps (float, optional): term added to the denominator to improve | |
numerical stability. (default: 1e-8) | |
weight_decay (float, optional): decoupled weight decay | |
(L2 penalty) (default: 0) | |
max_grad_norm (float, optional): value used to clip | |
global grad norm (default: 0.0 no clip) | |
no_prox (bool): how to perform the decoupled weight decay | |
(default: False) | |
foreach (bool): if True would use torch._foreach implementation. | |
It's faster but uses slightly more memory. (default: True) | |
""" | |
def __init__( | |
self, | |
params, | |
lr=1e-3, | |
betas=(0.98, 0.92, 0.99), | |
eps=1e-8, | |
weight_decay=0.0, | |
max_grad_norm=0.0, | |
no_prox=False, | |
foreach: bool = True, | |
): | |
if not 0.0 <= max_grad_norm: | |
raise ValueError("Invalid Max grad norm: {}".format(max_grad_norm)) | |
if not 0.0 <= lr: | |
raise ValueError("Invalid learning rate: {}".format(lr)) | |
if not 0.0 <= eps: | |
raise ValueError("Invalid epsilon value: {}".format(eps)) | |
if not 0.0 <= betas[0] < 1.0: | |
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) | |
if not 0.0 <= betas[1] < 1.0: | |
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) | |
if not 0.0 <= betas[2] < 1.0: | |
raise ValueError("Invalid beta parameter at index 2: {}".format(betas[2])) | |
defaults = dict( | |
lr=lr, | |
betas=betas, | |
eps=eps, | |
weight_decay=weight_decay, | |
max_grad_norm=max_grad_norm, | |
no_prox=no_prox, | |
foreach=foreach, | |
) | |
super().__init__(params, defaults) | |
def __setstate__(self, state): | |
super(Adan, self).__setstate__(state) | |
for group in self.param_groups: | |
group.setdefault("no_prox", False) | |
def restart_opt(self): | |
for group in self.param_groups: | |
group["step"] = 0 | |
for p in group["params"]: | |
if p.requires_grad: | |
state = self.state[p] | |
# State initialization | |
# Exponential moving average of gradient values | |
state["exp_avg"] = torch.zeros_like(p) | |
# Exponential moving average of squared gradient values | |
state["exp_avg_sq"] = torch.zeros_like(p) | |
# Exponential moving average of gradient difference | |
state["exp_avg_diff"] = torch.zeros_like(p) | |
def step(self, closure=None): | |
"""Performs a single optimization step.""" | |
loss = None | |
if closure is not None: | |
with torch.enable_grad(): | |
loss = closure() | |
if self.defaults["max_grad_norm"] > 0: | |
device = self.param_groups[0]["params"][0].device | |
global_grad_norm = torch.zeros(1, device=device) | |
max_grad_norm = torch.tensor(self.defaults["max_grad_norm"], device=device) | |
for group in self.param_groups: | |
for p in group["params"]: | |
if p.grad is not None: | |
grad = p.grad | |
global_grad_norm.add_(grad.pow(2).sum()) | |
global_grad_norm = torch.sqrt(global_grad_norm) | |
clip_global_grad_norm = torch.clamp( | |
max_grad_norm / (global_grad_norm + group["eps"]), max=1.0 | |
).item() | |
else: | |
clip_global_grad_norm = 1.0 | |
for group in self.param_groups: | |
params_with_grad = [] | |
grads = [] | |
exp_avgs = [] | |
exp_avg_sqs = [] | |
exp_avg_diffs = [] | |
neg_pre_grads = [] | |
beta1, beta2, beta3 = group["betas"] | |
# assume same step across group now to simplify things | |
# per parameter step can be easily support | |
# by making it tensor, or pass list into kernel | |
if "step" in group: | |
group["step"] += 1 | |
else: | |
group["step"] = 1 | |
bias_correction1 = 1.0 - beta1 ** group["step"] | |
bias_correction2 = 1.0 - beta2 ** group["step"] | |
bias_correction3 = 1.0 - beta3 ** group["step"] | |
for p in group["params"]: | |
if p.grad is None: | |
continue | |
params_with_grad.append(p) | |
grads.append(p.grad) | |
state = self.state[p] | |
if len(state) == 0: | |
state["exp_avg"] = torch.zeros_like(p) | |
state["exp_avg_sq"] = torch.zeros_like(p) | |
state["exp_avg_diff"] = torch.zeros_like(p) | |
if "neg_pre_grad" not in state or group["step"] == 1: | |
state["neg_pre_grad"] = p.grad.clone().mul_(-clip_global_grad_norm) | |
exp_avgs.append(state["exp_avg"]) | |
exp_avg_sqs.append(state["exp_avg_sq"]) | |
exp_avg_diffs.append(state["exp_avg_diff"]) | |
neg_pre_grads.append(state["neg_pre_grad"]) | |
kwargs = dict( | |
params=params_with_grad, | |
grads=grads, | |
exp_avgs=exp_avgs, | |
exp_avg_sqs=exp_avg_sqs, | |
exp_avg_diffs=exp_avg_diffs, | |
neg_pre_grads=neg_pre_grads, | |
beta1=beta1, | |
beta2=beta2, | |
beta3=beta3, | |
bias_correction1=bias_correction1, | |
bias_correction2=bias_correction2, | |
bias_correction3_sqrt=math.sqrt(bias_correction3), | |
lr=group["lr"], | |
weight_decay=group["weight_decay"], | |
eps=group["eps"], | |
no_prox=group["no_prox"], | |
clip_global_grad_norm=clip_global_grad_norm, | |
) | |
if group["foreach"]: | |
_multi_tensor_adan(**kwargs) | |
else: | |
_single_tensor_adan(**kwargs) | |
return loss | |
def _single_tensor_adan( | |
params: List[Tensor], | |
grads: List[Tensor], | |
exp_avgs: List[Tensor], | |
exp_avg_sqs: List[Tensor], | |
exp_avg_diffs: List[Tensor], | |
neg_pre_grads: List[Tensor], | |
*, | |
beta1: float, | |
beta2: float, | |
beta3: float, | |
bias_correction1: float, | |
bias_correction2: float, | |
bias_correction3_sqrt: float, | |
lr: float, | |
weight_decay: float, | |
eps: float, | |
no_prox: bool, | |
clip_global_grad_norm: Tensor, | |
): | |
for i, param in enumerate(params): | |
grad = grads[i] | |
exp_avg = exp_avgs[i] | |
exp_avg_sq = exp_avg_sqs[i] | |
exp_avg_diff = exp_avg_diffs[i] | |
neg_grad_or_diff = neg_pre_grads[i] | |
grad.mul_(clip_global_grad_norm) | |
# for memory saving, we use `neg_grad_or_diff` | |
# to get some temp variable in a inplace way | |
neg_grad_or_diff.add_(grad) | |
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) # m_t | |
exp_avg_diff.mul_(beta2).add_(neg_grad_or_diff, alpha=1 - beta2) # diff_t | |
neg_grad_or_diff.mul_(beta2).add_(grad) | |
exp_avg_sq.mul_(beta3).addcmul_( | |
neg_grad_or_diff, neg_grad_or_diff, value=1 - beta3 | |
) # n_t | |
denom = ((exp_avg_sq).sqrt() / bias_correction3_sqrt).add_(eps) | |
step_size_diff = lr * beta2 / bias_correction2 | |
step_size = lr / bias_correction1 | |
if no_prox: | |
param.mul_(1 - lr * weight_decay) | |
param.addcdiv_(exp_avg, denom, value=-step_size) | |
param.addcdiv_(exp_avg_diff, denom, value=-step_size_diff) | |
else: | |
param.addcdiv_(exp_avg, denom, value=-step_size) | |
param.addcdiv_(exp_avg_diff, denom, value=-step_size_diff) | |
param.div_(1 + lr * weight_decay) | |
neg_grad_or_diff.zero_().add_(grad, alpha=-1.0) | |
def _multi_tensor_adan( | |
params: List[Tensor], | |
grads: List[Tensor], | |
exp_avgs: List[Tensor], | |
exp_avg_sqs: List[Tensor], | |
exp_avg_diffs: List[Tensor], | |
neg_pre_grads: List[Tensor], | |
*, | |
beta1: float, | |
beta2: float, | |
beta3: float, | |
bias_correction1: float, | |
bias_correction2: float, | |
bias_correction3_sqrt: float, | |
lr: float, | |
weight_decay: float, | |
eps: float, | |
no_prox: bool, | |
clip_global_grad_norm: Tensor, | |
): | |
if len(params) == 0: | |
return | |
torch._foreach_mul_(grads, clip_global_grad_norm) | |
# for memory saving, we use `neg_pre_grads` | |
# to get some temp variable in a inplace way | |
torch._foreach_add_(neg_pre_grads, grads) | |
torch._foreach_mul_(exp_avgs, beta1) | |
torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1) # m_t | |
torch._foreach_mul_(exp_avg_diffs, beta2) | |
torch._foreach_add_(exp_avg_diffs, neg_pre_grads, alpha=1 - beta2) # diff_t | |
torch._foreach_mul_(neg_pre_grads, beta2) | |
torch._foreach_add_(neg_pre_grads, grads) | |
torch._foreach_mul_(exp_avg_sqs, beta3) | |
torch._foreach_addcmul_( | |
exp_avg_sqs, neg_pre_grads, neg_pre_grads, value=1 - beta3 | |
) # n_t | |
denom = torch._foreach_sqrt(exp_avg_sqs) | |
torch._foreach_div_(denom, bias_correction3_sqrt) | |
torch._foreach_add_(denom, eps) | |
step_size_diff = lr * beta2 / bias_correction2 | |
step_size = lr / bias_correction1 | |
if no_prox: | |
torch._foreach_mul_(params, 1 - lr * weight_decay) | |
torch._foreach_addcdiv_(params, exp_avgs, denom, value=-step_size) | |
torch._foreach_addcdiv_(params, exp_avg_diffs, denom, value=-step_size_diff) | |
else: | |
torch._foreach_addcdiv_(params, exp_avgs, denom, value=-step_size) | |
torch._foreach_addcdiv_(params, exp_avg_diffs, denom, value=-step_size_diff) | |
torch._foreach_div_(params, 1 + lr * weight_decay) | |
torch._foreach_zero_(neg_pre_grads) | |
torch._foreach_add_(neg_pre_grads, grads, alpha=-1.0) | |