File size: 11,203 Bytes
2fa4776
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# Copyright 2022 Garena Online Private Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from typing import List

import torch
from torch import Tensor
from torch.optim.optimizer import Optimizer


class Adan(Optimizer):
    """
    Implements a pytorch variant of Adan
    Adan was proposed in
    Adan: Adaptive Nesterov Momentum Algorithm for
        Faster Optimizing Deep Models[J].arXiv preprint arXiv:2208.06677, 2022.
    https://arxiv.org/abs/2208.06677
    Arguments:
        params (iterable): iterable of parameters to optimize or
            dicts defining parameter groups.
        lr (float, optional): learning rate. (default: 1e-3)
        betas (Tuple[float, float, flot], optional): coefficients used for
            first- and second-order moments. (default: (0.98, 0.92, 0.99))
        eps (float, optional): term added to the denominator to improve
            numerical stability. (default: 1e-8)
        weight_decay (float, optional): decoupled weight decay
            (L2 penalty) (default: 0)
        max_grad_norm (float, optional): value used to clip
            global grad norm (default: 0.0 no clip)
        no_prox (bool): how to perform the decoupled weight decay
            (default: False)
        foreach (bool): if True would use torch._foreach implementation.
            It's faster but uses slightly more memory. (default: True)
    """

    def __init__(
        self,
        params,
        lr=1e-3,
        betas=(0.98, 0.92, 0.99),
        eps=1e-8,
        weight_decay=0.0,
        max_grad_norm=0.0,
        no_prox=False,
        foreach: bool = True,
    ):
        if not 0.0 <= max_grad_norm:
            raise ValueError("Invalid Max grad norm: {}".format(max_grad_norm))
        if not 0.0 <= lr:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if not 0.0 <= eps:
            raise ValueError("Invalid epsilon value: {}".format(eps))
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
        if not 0.0 <= betas[2] < 1.0:
            raise ValueError("Invalid beta parameter at index 2: {}".format(betas[2]))
        defaults = dict(
            lr=lr,
            betas=betas,
            eps=eps,
            weight_decay=weight_decay,
            max_grad_norm=max_grad_norm,
            no_prox=no_prox,
            foreach=foreach,
        )
        super().__init__(params, defaults)

    def __setstate__(self, state):
        super(Adan, self).__setstate__(state)
        for group in self.param_groups:
            group.setdefault("no_prox", False)

    @torch.no_grad()
    def restart_opt(self):
        for group in self.param_groups:
            group["step"] = 0
            for p in group["params"]:
                if p.requires_grad:
                    state = self.state[p]
                    # State initialization

                    # Exponential moving average of gradient values
                    state["exp_avg"] = torch.zeros_like(p)
                    # Exponential moving average of squared gradient values
                    state["exp_avg_sq"] = torch.zeros_like(p)
                    # Exponential moving average of gradient difference
                    state["exp_avg_diff"] = torch.zeros_like(p)

    @torch.no_grad()
    def step(self, closure=None):
        """Performs a single optimization step."""

        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        if self.defaults["max_grad_norm"] > 0:
            device = self.param_groups[0]["params"][0].device
            global_grad_norm = torch.zeros(1, device=device)

            max_grad_norm = torch.tensor(self.defaults["max_grad_norm"], device=device)
            for group in self.param_groups:
                for p in group["params"]:
                    if p.grad is not None:
                        grad = p.grad
                        global_grad_norm.add_(grad.pow(2).sum())

            global_grad_norm = torch.sqrt(global_grad_norm)

            clip_global_grad_norm = torch.clamp(
                max_grad_norm / (global_grad_norm + group["eps"]), max=1.0
            ).item()
        else:
            clip_global_grad_norm = 1.0

        for group in self.param_groups:
            params_with_grad = []
            grads = []
            exp_avgs = []
            exp_avg_sqs = []
            exp_avg_diffs = []
            neg_pre_grads = []

            beta1, beta2, beta3 = group["betas"]
            # assume same step across group now to simplify things
            # per parameter step can be easily support
            # by making it tensor, or pass list into kernel
            if "step" in group:
                group["step"] += 1
            else:
                group["step"] = 1

            bias_correction1 = 1.0 - beta1 ** group["step"]
            bias_correction2 = 1.0 - beta2 ** group["step"]
            bias_correction3 = 1.0 - beta3 ** group["step"]

            for p in group["params"]:
                if p.grad is None:
                    continue
                params_with_grad.append(p)
                grads.append(p.grad)

                state = self.state[p]
                if len(state) == 0:
                    state["exp_avg"] = torch.zeros_like(p)
                    state["exp_avg_sq"] = torch.zeros_like(p)
                    state["exp_avg_diff"] = torch.zeros_like(p)

                if "neg_pre_grad" not in state or group["step"] == 1:
                    state["neg_pre_grad"] = p.grad.clone().mul_(-clip_global_grad_norm)

                exp_avgs.append(state["exp_avg"])
                exp_avg_sqs.append(state["exp_avg_sq"])
                exp_avg_diffs.append(state["exp_avg_diff"])
                neg_pre_grads.append(state["neg_pre_grad"])

            kwargs = dict(
                params=params_with_grad,
                grads=grads,
                exp_avgs=exp_avgs,
                exp_avg_sqs=exp_avg_sqs,
                exp_avg_diffs=exp_avg_diffs,
                neg_pre_grads=neg_pre_grads,
                beta1=beta1,
                beta2=beta2,
                beta3=beta3,
                bias_correction1=bias_correction1,
                bias_correction2=bias_correction2,
                bias_correction3_sqrt=math.sqrt(bias_correction3),
                lr=group["lr"],
                weight_decay=group["weight_decay"],
                eps=group["eps"],
                no_prox=group["no_prox"],
                clip_global_grad_norm=clip_global_grad_norm,
            )

            if group["foreach"]:
                _multi_tensor_adan(**kwargs)
            else:
                _single_tensor_adan(**kwargs)

        return loss


def _single_tensor_adan(
    params: List[Tensor],
    grads: List[Tensor],
    exp_avgs: List[Tensor],
    exp_avg_sqs: List[Tensor],
    exp_avg_diffs: List[Tensor],
    neg_pre_grads: List[Tensor],
    *,
    beta1: float,
    beta2: float,
    beta3: float,
    bias_correction1: float,
    bias_correction2: float,
    bias_correction3_sqrt: float,
    lr: float,
    weight_decay: float,
    eps: float,
    no_prox: bool,
    clip_global_grad_norm: Tensor,
):
    for i, param in enumerate(params):
        grad = grads[i]
        exp_avg = exp_avgs[i]
        exp_avg_sq = exp_avg_sqs[i]
        exp_avg_diff = exp_avg_diffs[i]
        neg_grad_or_diff = neg_pre_grads[i]

        grad.mul_(clip_global_grad_norm)

        # for memory saving, we use `neg_grad_or_diff`
        # to get some temp variable in a inplace way
        neg_grad_or_diff.add_(grad)

        exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)  # m_t
        exp_avg_diff.mul_(beta2).add_(neg_grad_or_diff, alpha=1 - beta2)  # diff_t

        neg_grad_or_diff.mul_(beta2).add_(grad)
        exp_avg_sq.mul_(beta3).addcmul_(
            neg_grad_or_diff, neg_grad_or_diff, value=1 - beta3
        )  # n_t

        denom = ((exp_avg_sq).sqrt() / bias_correction3_sqrt).add_(eps)
        step_size_diff = lr * beta2 / bias_correction2
        step_size = lr / bias_correction1

        if no_prox:
            param.mul_(1 - lr * weight_decay)
            param.addcdiv_(exp_avg, denom, value=-step_size)
            param.addcdiv_(exp_avg_diff, denom, value=-step_size_diff)
        else:
            param.addcdiv_(exp_avg, denom, value=-step_size)
            param.addcdiv_(exp_avg_diff, denom, value=-step_size_diff)
            param.div_(1 + lr * weight_decay)

        neg_grad_or_diff.zero_().add_(grad, alpha=-1.0)


def _multi_tensor_adan(
    params: List[Tensor],
    grads: List[Tensor],
    exp_avgs: List[Tensor],
    exp_avg_sqs: List[Tensor],
    exp_avg_diffs: List[Tensor],
    neg_pre_grads: List[Tensor],
    *,
    beta1: float,
    beta2: float,
    beta3: float,
    bias_correction1: float,
    bias_correction2: float,
    bias_correction3_sqrt: float,
    lr: float,
    weight_decay: float,
    eps: float,
    no_prox: bool,
    clip_global_grad_norm: Tensor,
):
    if len(params) == 0:
        return

    torch._foreach_mul_(grads, clip_global_grad_norm)

    # for memory saving, we use `neg_pre_grads`
    # to get some temp variable in a inplace way
    torch._foreach_add_(neg_pre_grads, grads)

    torch._foreach_mul_(exp_avgs, beta1)
    torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1)  # m_t

    torch._foreach_mul_(exp_avg_diffs, beta2)
    torch._foreach_add_(exp_avg_diffs, neg_pre_grads, alpha=1 - beta2)  # diff_t

    torch._foreach_mul_(neg_pre_grads, beta2)
    torch._foreach_add_(neg_pre_grads, grads)
    torch._foreach_mul_(exp_avg_sqs, beta3)
    torch._foreach_addcmul_(
        exp_avg_sqs, neg_pre_grads, neg_pre_grads, value=1 - beta3
    )  # n_t

    denom = torch._foreach_sqrt(exp_avg_sqs)
    torch._foreach_div_(denom, bias_correction3_sqrt)
    torch._foreach_add_(denom, eps)

    step_size_diff = lr * beta2 / bias_correction2
    step_size = lr / bias_correction1

    if no_prox:
        torch._foreach_mul_(params, 1 - lr * weight_decay)
        torch._foreach_addcdiv_(params, exp_avgs, denom, value=-step_size)
        torch._foreach_addcdiv_(params, exp_avg_diffs, denom, value=-step_size_diff)
    else:
        torch._foreach_addcdiv_(params, exp_avgs, denom, value=-step_size)
        torch._foreach_addcdiv_(params, exp_avg_diffs, denom, value=-step_size_diff)
        torch._foreach_div_(params, 1 + lr * weight_decay)
    torch._foreach_zero_(neg_pre_grads)
    torch._foreach_add_(neg_pre_grads, grads, alpha=-1.0)