Spaces:
Runtime error
Runtime error
File size: 18,600 Bytes
2fa4776 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
from dataclasses import dataclass, field
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers import IFPipeline
from diffusers.utils.import_utils import is_xformers_available
from tqdm import tqdm
import threestudio
from threestudio.models.prompt_processors.base import PromptProcessorOutput
from threestudio.utils.base import BaseObject
from threestudio.utils.misc import C, parse_version
from threestudio.utils.ops import perpendicular_component
from threestudio.utils.typing import *
@threestudio.register("deep-floyd-guidance")
class DeepFloydGuidance(BaseObject):
@dataclass
class Config(BaseObject.Config):
pretrained_model_name_or_path: str = "DeepFloyd/IF-I-XL-v1.0"
# FIXME: xformers error
enable_memory_efficient_attention: bool = False
enable_sequential_cpu_offload: bool = False
enable_attention_slicing: bool = False
enable_channels_last_format: bool = True
guidance_scale: float = 20.0
grad_clip: Optional[
Any
] = None # field(default_factory=lambda: [0, 2.0, 8.0, 1000])
half_precision_weights: bool = True
min_step_percent: float = 0.02
max_step_percent: float = 0.98
weighting_strategy: str = "sds"
view_dependent_prompting: bool = True
"""Maximum number of batch items to evaluate guidance for (for debugging) and to save on disk. -1 means save all items."""
max_items_eval: int = 4
cfg: Config
def configure(self) -> None:
threestudio.info(f"Loading Deep Floyd ...")
self.weights_dtype = (
torch.float16 if self.cfg.half_precision_weights else torch.float32
)
# Create model
self.pipe = IFPipeline.from_pretrained(
self.cfg.pretrained_model_name_or_path,
text_encoder=None,
safety_checker=None,
watermarker=None,
feature_extractor=None,
requires_safety_checker=False,
variant="fp16" if self.cfg.half_precision_weights else None,
torch_dtype=self.weights_dtype,
).to(self.device)
if self.cfg.enable_memory_efficient_attention:
if parse_version(torch.__version__) >= parse_version("2"):
threestudio.info(
"PyTorch2.0 uses memory efficient attention by default."
)
elif not is_xformers_available():
threestudio.warn(
"xformers is not available, memory efficient attention is not enabled."
)
else:
threestudio.warn(
f"Use DeepFloyd with xformers may raise error, see https://github.com/deep-floyd/IF/issues/52 to track this problem."
)
self.pipe.enable_xformers_memory_efficient_attention()
if self.cfg.enable_sequential_cpu_offload:
self.pipe.enable_sequential_cpu_offload()
if self.cfg.enable_attention_slicing:
self.pipe.enable_attention_slicing(1)
if self.cfg.enable_channels_last_format:
self.pipe.unet.to(memory_format=torch.channels_last)
self.unet = self.pipe.unet.eval()
for p in self.unet.parameters():
p.requires_grad_(False)
self.scheduler = self.pipe.scheduler
self.num_train_timesteps = self.scheduler.config.num_train_timesteps
self.set_min_max_steps() # set to default value
self.alphas: Float[Tensor, "..."] = self.scheduler.alphas_cumprod.to(
self.device
)
self.grad_clip_val: Optional[float] = None
threestudio.info(f"Loaded Deep Floyd!")
@torch.cuda.amp.autocast(enabled=False)
def set_min_max_steps(self, min_step_percent=0.02, max_step_percent=0.98):
self.min_step = int(self.num_train_timesteps * min_step_percent)
self.max_step = int(self.num_train_timesteps * max_step_percent)
@torch.cuda.amp.autocast(enabled=False)
def forward_unet(
self,
latents: Float[Tensor, "..."],
t: Float[Tensor, "..."],
encoder_hidden_states: Float[Tensor, "..."],
) -> Float[Tensor, "..."]:
input_dtype = latents.dtype
return self.unet(
latents.to(self.weights_dtype),
t.to(self.weights_dtype),
encoder_hidden_states=encoder_hidden_states.to(self.weights_dtype),
).sample.to(input_dtype)
def __call__(
self,
rgb: Float[Tensor, "B H W C"],
prompt_utils: PromptProcessorOutput,
elevation: Float[Tensor, "B"],
azimuth: Float[Tensor, "B"],
camera_distances: Float[Tensor, "B"],
rgb_as_latents=False,
guidance_eval=False,
**kwargs,
):
batch_size = rgb.shape[0]
rgb_BCHW = rgb.permute(0, 3, 1, 2)
# import pdb; pdb.set_trace()
assert rgb_as_latents == False, f"No latent space in {self.__class__.__name__}"
rgb_BCHW = rgb_BCHW * 2.0 - 1.0 # scale to [-1, 1] to match the diffusion range
latents = F.interpolate(
rgb_BCHW, (64, 64), mode="bilinear", align_corners=False
)
# timestep ~ U(0.02, 0.98) to avoid very high/low noise level
t = torch.randint(
self.min_step,
self.max_step + 1,
[batch_size],
dtype=torch.long,
device=self.device,
)
if prompt_utils.use_perp_neg:
(
text_embeddings,
neg_guidance_weights,
) = prompt_utils.get_text_embeddings_perp_neg(
elevation, azimuth, camera_distances, self.cfg.view_dependent_prompting
)
with torch.no_grad():
noise = torch.randn_like(latents)
latents_noisy = self.scheduler.add_noise(latents, noise, t)
latent_model_input = torch.cat([latents_noisy] * 4, dim=0)
noise_pred = self.forward_unet(
latent_model_input,
torch.cat([t] * 4),
encoder_hidden_states=text_embeddings,
) # (4B, 6, 64, 64)
noise_pred_text, _ = noise_pred[:batch_size].split(3, dim=1)
noise_pred_uncond, _ = noise_pred[batch_size : batch_size * 2].split(
3, dim=1
)
noise_pred_neg, _ = noise_pred[batch_size * 2 :].split(3, dim=1)
e_pos = noise_pred_text - noise_pred_uncond
accum_grad = 0
n_negative_prompts = neg_guidance_weights.shape[-1]
for i in range(n_negative_prompts):
e_i_neg = noise_pred_neg[i::n_negative_prompts] - noise_pred_uncond
accum_grad += neg_guidance_weights[:, i].view(
-1, 1, 1, 1
) * perpendicular_component(e_i_neg, e_pos)
noise_pred = noise_pred_uncond + self.cfg.guidance_scale * (
e_pos + accum_grad
)
else:
neg_guidance_weights = None
text_embeddings = prompt_utils.get_text_embeddings(
elevation, azimuth, camera_distances, self.cfg.view_dependent_prompting
)
# predict the noise residual with unet, NO grad!
with torch.no_grad():
# add noise
noise = torch.randn_like(latents) # TODO: use torch generator
latents_noisy = self.scheduler.add_noise(latents, noise, t)
# pred noise
latent_model_input = torch.cat([latents_noisy] * 2, dim=0)
noise_pred = self.forward_unet(
latent_model_input,
torch.cat([t] * 2),
encoder_hidden_states=text_embeddings,
) # (2B, 6, 64, 64)
# perform guidance (high scale from paper!)
noise_pred_text, noise_pred_uncond = noise_pred.chunk(2)
noise_pred_text, predicted_variance = noise_pred_text.split(3, dim=1)
noise_pred_uncond, _ = noise_pred_uncond.split(3, dim=1)
noise_pred = noise_pred_text + self.cfg.guidance_scale * (
noise_pred_text - noise_pred_uncond
)
"""
# thresholding, experimental
if self.cfg.thresholding:
assert batch_size == 1
noise_pred = torch.cat([noise_pred, predicted_variance], dim=1)
noise_pred = custom_ddpm_step(self.scheduler,
noise_pred, int(t.item()), latents_noisy, **self.pipe.prepare_extra_step_kwargs(None, 0.0)
)
"""
if self.cfg.weighting_strategy == "sds":
# w(t), sigma_t^2
w = (1 - self.alphas[t]).view(-1, 1, 1, 1)
elif self.cfg.weighting_strategy == "uniform":
w = 1
elif self.cfg.weighting_strategy == "fantasia3d":
w = (self.alphas[t] ** 0.5 * (1 - self.alphas[t])).view(-1, 1, 1, 1)
else:
raise ValueError(
f"Unknown weighting strategy: {self.cfg.weighting_strategy}"
)
grad = w * (noise_pred - noise)
grad = torch.nan_to_num(grad)
# clip grad for stable training?
if self.grad_clip_val is not None:
grad = grad.clamp(-self.grad_clip_val, self.grad_clip_val)
# loss = SpecifyGradient.apply(latents, grad)
# SpecifyGradient is not straghtforward, use a reparameterization trick instead
target = (latents - grad).detach()
# d(loss)/d(latents) = latents - target = latents - (latents - grad) = grad
loss_sds = 0.5 * F.mse_loss(latents, target, reduction="sum") / batch_size
guidance_out = {
"loss_sds": loss_sds,
"grad_norm": grad.norm(),
"min_step": self.min_step,
"max_step": self.max_step,
}
if guidance_eval:
guidance_eval_utils = {
"use_perp_neg": prompt_utils.use_perp_neg,
"neg_guidance_weights": neg_guidance_weights,
"text_embeddings": text_embeddings,
"t_orig": t,
"latents_noisy": latents_noisy,
"noise_pred": torch.cat([noise_pred, predicted_variance], dim=1),
}
guidance_eval_out = self.guidance_eval(**guidance_eval_utils)
texts = []
for n, e, a, c in zip(
guidance_eval_out["noise_levels"], elevation, azimuth, camera_distances
):
texts.append(
f"n{n:.02f}\ne{e.item():.01f}\na{a.item():.01f}\nc{c.item():.02f}"
)
guidance_eval_out.update({"texts": texts})
guidance_out.update({"eval": guidance_eval_out})
return guidance_out
@torch.cuda.amp.autocast(enabled=False)
@torch.no_grad()
def get_noise_pred(
self,
latents_noisy,
t,
text_embeddings,
use_perp_neg=False,
neg_guidance_weights=None,
):
batch_size = latents_noisy.shape[0]
if use_perp_neg:
latent_model_input = torch.cat([latents_noisy] * 4, dim=0)
noise_pred = self.forward_unet(
latent_model_input,
torch.cat([t.reshape(1)] * 4).to(self.device),
encoder_hidden_states=text_embeddings,
) # (4B, 6, 64, 64)
noise_pred_text, _ = noise_pred[:batch_size].split(3, dim=1)
noise_pred_uncond, _ = noise_pred[batch_size : batch_size * 2].split(
3, dim=1
)
noise_pred_neg, _ = noise_pred[batch_size * 2 :].split(3, dim=1)
e_pos = noise_pred_text - noise_pred_uncond
accum_grad = 0
n_negative_prompts = neg_guidance_weights.shape[-1]
for i in range(n_negative_prompts):
e_i_neg = noise_pred_neg[i::n_negative_prompts] - noise_pred_uncond
accum_grad += neg_guidance_weights[:, i].view(
-1, 1, 1, 1
) * perpendicular_component(e_i_neg, e_pos)
noise_pred = noise_pred_uncond + self.cfg.guidance_scale * (
e_pos + accum_grad
)
else:
latent_model_input = torch.cat([latents_noisy] * 2, dim=0)
noise_pred = self.forward_unet(
latent_model_input,
torch.cat([t.reshape(1)] * 2).to(self.device),
encoder_hidden_states=text_embeddings,
) # (2B, 6, 64, 64)
# perform guidance (high scale from paper!)
noise_pred_text, noise_pred_uncond = noise_pred.chunk(2)
noise_pred_text, predicted_variance = noise_pred_text.split(3, dim=1)
noise_pred_uncond, _ = noise_pred_uncond.split(3, dim=1)
noise_pred = noise_pred_text + self.cfg.guidance_scale * (
noise_pred_text - noise_pred_uncond
)
return torch.cat([noise_pred, predicted_variance], dim=1)
@torch.cuda.amp.autocast(enabled=False)
@torch.no_grad()
def guidance_eval(
self,
t_orig,
text_embeddings,
latents_noisy,
noise_pred,
use_perp_neg=False,
neg_guidance_weights=None,
):
# use only 50 timesteps, and find nearest of those to t
self.scheduler.set_timesteps(50)
self.scheduler.timesteps_gpu = self.scheduler.timesteps.to(self.device)
bs = (
min(self.cfg.max_items_eval, latents_noisy.shape[0])
if self.cfg.max_items_eval > 0
else latents_noisy.shape[0]
) # batch size
large_enough_idxs = self.scheduler.timesteps_gpu.expand([bs, -1]) > t_orig[
:bs
].unsqueeze(
-1
) # sized [bs,50] > [bs,1]
idxs = torch.min(large_enough_idxs, dim=1)[1]
t = self.scheduler.timesteps_gpu[idxs]
fracs = list((t / self.scheduler.config.num_train_timesteps).cpu().numpy())
imgs_noisy = (latents_noisy[:bs] / 2 + 0.5).permute(0, 2, 3, 1)
# get prev latent
latents_1step = []
pred_1orig = []
for b in range(bs):
step_output = self.scheduler.step(
noise_pred[b : b + 1], t[b], latents_noisy[b : b + 1]
)
latents_1step.append(step_output["prev_sample"])
pred_1orig.append(step_output["pred_original_sample"])
latents_1step = torch.cat(latents_1step)
pred_1orig = torch.cat(pred_1orig)
imgs_1step = (latents_1step / 2 + 0.5).permute(0, 2, 3, 1)
imgs_1orig = (pred_1orig / 2 + 0.5).permute(0, 2, 3, 1)
latents_final = []
for b, i in enumerate(idxs):
latents = latents_1step[b : b + 1]
text_emb = (
text_embeddings[
[b, b + len(idxs), b + 2 * len(idxs), b + 3 * len(idxs)], ...
]
if use_perp_neg
else text_embeddings[[b, b + len(idxs)], ...]
)
neg_guid = neg_guidance_weights[b : b + 1] if use_perp_neg else None
for t in tqdm(self.scheduler.timesteps[i + 1 :], leave=False):
# pred noise
noise_pred = self.get_noise_pred(
latents, t, text_emb, use_perp_neg, neg_guid
)
# get prev latent
latents = self.scheduler.step(noise_pred, t, latents)["prev_sample"]
latents_final.append(latents)
latents_final = torch.cat(latents_final)
imgs_final = (latents_final / 2 + 0.5).permute(0, 2, 3, 1)
return {
"bs": bs,
"noise_levels": fracs,
"imgs_noisy": imgs_noisy,
"imgs_1step": imgs_1step,
"imgs_1orig": imgs_1orig,
"imgs_final": imgs_final,
}
def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False):
# clip grad for stable training as demonstrated in
# Debiasing Scores and Prompts of 2D Diffusion for Robust Text-to-3D Generation
# http://arxiv.org/abs/2303.15413
if self.cfg.grad_clip is not None:
self.grad_clip_val = C(self.cfg.grad_clip, epoch, global_step)
self.set_min_max_steps(
min_step_percent=C(self.cfg.min_step_percent, epoch, global_step),
max_step_percent=C(self.cfg.max_step_percent, epoch, global_step),
)
"""
# used by thresholding, experimental
def custom_ddpm_step(ddpm, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor, generator=None, return_dict: bool = True):
self = ddpm
t = timestep
prev_t = self.previous_timestep(t)
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
else:
predicted_variance = None
# 1. compute alphas, betas
alpha_prod_t = self.alphas_cumprod[t].item()
alpha_prod_t_prev = self.alphas_cumprod[prev_t].item() if prev_t >= 0 else 1.0
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
current_alpha_t = alpha_prod_t / alpha_prod_t_prev
current_beta_t = 1 - current_alpha_t
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
elif self.config.prediction_type == "sample":
pred_original_sample = model_output
elif self.config.prediction_type == "v_prediction":
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
" `v_prediction` for the DDPMScheduler."
)
# 3. Clip or threshold "predicted x_0"
if self.config.thresholding:
pred_original_sample = self._threshold_sample(pred_original_sample)
elif self.config.clip_sample:
pred_original_sample = pred_original_sample.clamp(
-self.config.clip_sample_range, self.config.clip_sample_range
)
noise_thresholded = (sample - (alpha_prod_t ** 0.5) * pred_original_sample) / (beta_prod_t ** 0.5)
return noise_thresholded
"""
|