Spaces:
Runtime error
Runtime error
File size: 13,502 Bytes
2fa4776 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
import os
from dataclasses import dataclass, field
import pytorch_lightning as pl
import torch.nn.functional as F
import threestudio
from threestudio.models.exporters.base import Exporter, ExporterOutput
from threestudio.systems.utils import parse_optimizer, parse_scheduler
from threestudio.utils.base import Updateable, update_if_possible
from threestudio.utils.config import parse_structured
from threestudio.utils.misc import C, cleanup, get_device, load_module_weights
from threestudio.utils.saving import SaverMixin
from threestudio.utils.typing import *
class BaseSystem(pl.LightningModule, Updateable, SaverMixin):
@dataclass
class Config:
loggers: dict = field(default_factory=dict)
loss: dict = field(default_factory=dict)
optimizer: dict = field(default_factory=dict)
scheduler: Optional[dict] = None
weights: Optional[str] = None
weights_ignore_modules: Optional[List[str]] = None
cleanup_after_validation_step: bool = False
cleanup_after_test_step: bool = False
cfg: Config
def __init__(self, cfg, resumed=False) -> None:
super().__init__()
self.cfg = parse_structured(self.Config, cfg)
self._save_dir: Optional[str] = None
self._resumed: bool = resumed
self._resumed_eval: bool = False
self._resumed_eval_status: dict = {"global_step": 0, "current_epoch": 0}
if "loggers" in cfg:
self.create_loggers(cfg.loggers)
self.configure()
if self.cfg.weights is not None:
self.load_weights(self.cfg.weights, self.cfg.weights_ignore_modules)
self.post_configure()
def load_weights(self, weights: str, ignore_modules: Optional[List[str]] = None):
state_dict, epoch, global_step = load_module_weights(
weights, ignore_modules=ignore_modules, map_location="cpu"
)
self.load_state_dict(state_dict, strict=False)
# restore step-dependent states
self.do_update_step(epoch, global_step, on_load_weights=True)
def set_resume_status(self, current_epoch: int, global_step: int):
# restore correct epoch and global step in eval
self._resumed_eval = True
self._resumed_eval_status["current_epoch"] = current_epoch
self._resumed_eval_status["global_step"] = global_step
@property
def resumed(self):
# whether from resumed checkpoint
return self._resumed
@property
def true_global_step(self):
if self._resumed_eval:
return self._resumed_eval_status["global_step"]
else:
return self.global_step
@property
def true_current_epoch(self):
if self._resumed_eval:
return self._resumed_eval_status["current_epoch"]
else:
return self.current_epoch
def configure(self) -> None:
pass
def post_configure(self) -> None:
"""
executed after weights are loaded
"""
pass
def C(self, value: Any) -> float:
return C(value, self.true_current_epoch, self.true_global_step)
def configure_optimizers(self):
optim = parse_optimizer(self.cfg.optimizer, self)
ret = {
"optimizer": optim,
}
if self.cfg.scheduler is not None:
ret.update(
{
"lr_scheduler": parse_scheduler(self.cfg.scheduler, optim),
}
)
return ret
def training_step(self, batch, batch_idx):
raise NotImplementedError
def validation_step(self, batch, batch_idx):
raise NotImplementedError
def on_validation_batch_end(self, outputs, batch, batch_idx):
if self.cfg.cleanup_after_validation_step:
# cleanup to save vram
cleanup()
def on_validation_epoch_end(self):
raise NotImplementedError
def test_step(self, batch, batch_idx):
raise NotImplementedError
def on_test_batch_end(self, outputs, batch, batch_idx):
if self.cfg.cleanup_after_test_step:
# cleanup to save vram
cleanup()
def on_test_epoch_end(self):
pass
def predict_step(self, batch, batch_idx):
raise NotImplementedError
def on_predict_batch_end(self, outputs, batch, batch_idx):
if self.cfg.cleanup_after_test_step:
# cleanup to save vram
cleanup()
def on_predict_epoch_end(self):
pass
def preprocess_data(self, batch, stage):
pass
"""
Implementing on_after_batch_transfer of DataModule does the same.
But on_after_batch_transfer does not support DP.
"""
def on_train_batch_start(self, batch, batch_idx, unused=0):
self.preprocess_data(batch, "train")
self.dataset = self.trainer.train_dataloader.dataset
update_if_possible(self.dataset, self.true_current_epoch, self.true_global_step)
self.do_update_step(self.true_current_epoch, self.true_global_step)
def on_validation_batch_start(self, batch, batch_idx, dataloader_idx=0):
self.preprocess_data(batch, "validation")
self.dataset = self.trainer.val_dataloaders.dataset
update_if_possible(self.dataset, self.true_current_epoch, self.true_global_step)
self.do_update_step(self.true_current_epoch, self.true_global_step)
def on_test_batch_start(self, batch, batch_idx, dataloader_idx=0):
self.preprocess_data(batch, "test")
self.dataset = self.trainer.test_dataloaders.dataset
update_if_possible(self.dataset, self.true_current_epoch, self.true_global_step)
self.do_update_step(self.true_current_epoch, self.true_global_step)
def on_predict_batch_start(self, batch, batch_idx, dataloader_idx=0):
self.preprocess_data(batch, "predict")
self.dataset = self.trainer.predict_dataloaders.dataset
update_if_possible(self.dataset, self.true_current_epoch, self.true_global_step)
self.do_update_step(self.true_current_epoch, self.true_global_step)
def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False):
pass
def on_before_optimizer_step(self, optimizer):
"""
# some gradient-related debugging goes here, example:
from lightning.pytorch.utilities import grad_norm
norms = grad_norm(self.geometry, norm_type=2)
print(norms)
"""
pass
class BaseLift3DSystem(BaseSystem):
@dataclass
class Config(BaseSystem.Config):
geometry_type: str = ""
geometry: dict = field(default_factory=dict)
geometry_convert_from: Optional[str] = None
geometry_convert_inherit_texture: bool = False
# used to override configurations of the previous geometry being converted from,
# for example isosurface_threshold
geometry_convert_override: dict = field(default_factory=dict)
material_type: str = ""
material: dict = field(default_factory=dict)
background_type: str = ""
background: dict = field(default_factory=dict)
renderer_type: str = ""
renderer: dict = field(default_factory=dict)
guidance_type: str = ""
guidance: dict = field(default_factory=dict)
prompt_processor_type: str = ""
prompt_processor: dict = field(default_factory=dict)
# geometry export configurations, no need to specify in training
exporter_type: str = "mesh-exporter"
exporter: dict = field(default_factory=dict)
cfg: Config
def configure(self) -> None:
if (
self.cfg.geometry_convert_from # from_coarse must be specified
and not self.cfg.weights # not initialized from coarse when weights are specified
and not self.resumed # not initialized from coarse when resumed from checkpoints
):
threestudio.info("Initializing geometry from a given checkpoint ...")
from threestudio.utils.config import load_config, parse_structured
prev_cfg = load_config(
os.path.join(
os.path.dirname(self.cfg.geometry_convert_from),
"../configs/parsed.yaml",
)
) # TODO: hard-coded relative path
prev_system_cfg: BaseLift3DSystem.Config = parse_structured(
self.Config, prev_cfg.system
)
prev_geometry_cfg = prev_system_cfg.geometry
prev_geometry_cfg.update(self.cfg.geometry_convert_override)
prev_geometry = threestudio.find(prev_system_cfg.geometry_type)(
prev_geometry_cfg
)
state_dict, epoch, global_step = load_module_weights(
self.cfg.geometry_convert_from,
module_name="geometry",
map_location="cpu",
)
prev_geometry.load_state_dict(state_dict, strict=False)
# restore step-dependent states
prev_geometry.do_update_step(epoch, global_step, on_load_weights=True)
# convert from coarse stage geometry
prev_geometry = prev_geometry.to(get_device())
self.geometry = threestudio.find(self.cfg.geometry_type).create_from(
prev_geometry,
self.cfg.geometry,
copy_net=self.cfg.geometry_convert_inherit_texture,
)
del prev_geometry
cleanup()
else:
self.geometry = threestudio.find(self.cfg.geometry_type)(self.cfg.geometry)
self.material = threestudio.find(self.cfg.material_type)(self.cfg.material)
self.background = threestudio.find(self.cfg.background_type)(
self.cfg.background
)
self.renderer = threestudio.find(self.cfg.renderer_type)(
self.cfg.renderer,
geometry=self.geometry,
material=self.material,
background=self.background,
)
def on_fit_start(self) -> None:
if self._save_dir is not None:
threestudio.info(f"Validation results will be saved to {self._save_dir}")
else:
threestudio.warn(
f"Saving directory not set for the system, visualization results will not be saved"
)
def on_test_end(self) -> None:
if self._save_dir is not None:
threestudio.info(f"Test results saved to {self._save_dir}")
def on_predict_start(self) -> None:
self.exporter: Exporter = threestudio.find(self.cfg.exporter_type)(
self.cfg.exporter,
geometry=self.geometry,
material=self.material,
background=self.background,
)
def predict_step(self, batch, batch_idx):
if self.exporter.cfg.save_video:
self.test_step(batch, batch_idx)
def on_predict_epoch_end(self) -> None:
if self.exporter.cfg.save_video:
self.on_test_epoch_end()
exporter_output: List[ExporterOutput] = self.exporter()
for out in exporter_output:
save_func_name = f"save_{out.save_type}"
if not hasattr(self, save_func_name):
raise ValueError(f"{save_func_name} not supported by the SaverMixin")
save_func = getattr(self, save_func_name)
save_func(f"it{self.true_global_step}-export/{out.save_name}", **out.params)
def on_predict_end(self) -> None:
if self._save_dir is not None:
threestudio.info(f"Export assets saved to {self._save_dir}")
def guidance_evaluation_save(self, comp_rgb, guidance_eval_out):
B, size = comp_rgb.shape[:2]
resize = lambda x: F.interpolate(
x.permute(0, 3, 1, 2), (size, size), mode="bilinear", align_corners=False
).permute(0, 2, 3, 1)
filename = f"it{self.true_global_step}-train.png"
def merge12(x):
return x.reshape(-1, *x.shape[2:])
self.save_image_grid(
filename,
[
{
"type": "rgb",
"img": merge12(comp_rgb),
"kwargs": {"data_format": "HWC"},
},
]
+ (
[
{
"type": "rgb",
"img": merge12(resize(guidance_eval_out["imgs_noisy"])),
"kwargs": {"data_format": "HWC"},
}
]
)
+ (
[
{
"type": "rgb",
"img": merge12(resize(guidance_eval_out["imgs_1step"])),
"kwargs": {"data_format": "HWC"},
}
]
)
+ (
[
{
"type": "rgb",
"img": merge12(resize(guidance_eval_out["imgs_1orig"])),
"kwargs": {"data_format": "HWC"},
}
]
)
+ (
[
{
"type": "rgb",
"img": merge12(resize(guidance_eval_out["imgs_final"])),
"kwargs": {"data_format": "HWC"},
}
]
),
name="train_step",
step=self.true_global_step,
texts=guidance_eval_out["texts"],
)
|