Spaces:
Runtime error
Runtime error
File size: 25,947 Bytes
2fa4776 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 |
import gzip
import json
import os
import warnings
from dataclasses import dataclass, field
from typing import List
import cv2
import numpy as np
import pytorch_lightning as pl
import torch
import torchvision.transforms.functional as TF
from PIL import Image
from torch.utils.data import DataLoader, Dataset, IterableDataset
from threestudio import register
from threestudio.data.uncond import (
RandomCameraDataModuleConfig,
RandomCameraDataset,
RandomCameraIterableDataset,
)
from threestudio.utils.config import parse_structured
from threestudio.utils.misc import get_rank
from threestudio.utils.ops import (
get_mvp_matrix,
get_projection_matrix,
get_ray_directions,
get_rays,
)
from threestudio.utils.typing import *
def _load_16big_png_depth(depth_png) -> np.ndarray:
with Image.open(depth_png) as depth_pil:
# the image is stored with 16-bit depth but PIL reads it as I (32 bit).
# we cast it to uint16, then reinterpret as float16, then cast to float32
depth = (
np.frombuffer(np.array(depth_pil, dtype=np.uint16), dtype=np.float16)
.astype(np.float32)
.reshape((depth_pil.size[1], depth_pil.size[0]))
)
return depth
def _load_depth(path, scale_adjustment) -> np.ndarray:
if not path.lower().endswith(".png"):
raise ValueError('unsupported depth file name "%s"' % path)
d = _load_16big_png_depth(path) * scale_adjustment
d[~np.isfinite(d)] = 0.0
return d[None] # fake feature channel
# Code adapted from https://github.com/eldar/snes/blob/473ff2b1f6/3rdparty/co3d/dataset/co3d_dataset.py
def _get_1d_bounds(arr):
nz = np.flatnonzero(arr)
return nz[0], nz[-1]
def get_bbox_from_mask(mask, thr, decrease_quant=0.05):
# bbox in xywh
masks_for_box = np.zeros_like(mask)
while masks_for_box.sum() <= 1.0:
masks_for_box = (mask > thr).astype(np.float32)
thr -= decrease_quant
if thr <= 0.0:
warnings.warn(f"Empty masks_for_bbox (thr={thr}) => using full image.")
x0, x1 = _get_1d_bounds(masks_for_box.sum(axis=-2))
y0, y1 = _get_1d_bounds(masks_for_box.sum(axis=-1))
return x0, y0, x1 - x0, y1 - y0
def get_clamp_bbox(bbox, box_crop_context=0.0, impath=""):
# box_crop_context: rate of expansion for bbox
# returns possibly expanded bbox xyxy as float
# increase box size
if box_crop_context > 0.0:
c = box_crop_context
bbox = bbox.astype(np.float32)
bbox[0] -= bbox[2] * c / 2
bbox[1] -= bbox[3] * c / 2
bbox[2] += bbox[2] * c
bbox[3] += bbox[3] * c
if (bbox[2:] <= 1.0).any():
warnings.warn(f"squashed image {impath}!!")
return None
# bbox[2:] = np.clip(bbox[2:], 2, )
bbox[2:] = np.maximum(bbox[2:], 2)
bbox[2:] += bbox[0:2] + 1 # convert to [xmin, ymin, xmax, ymax]
# +1 because upper bound is not inclusive
return bbox
def crop_around_box(tensor, bbox, impath=""):
bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0.0, tensor.shape[-2])
bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0.0, tensor.shape[-3])
bbox = bbox.round().astype(np.longlong)
return tensor[bbox[1] : bbox[3], bbox[0] : bbox[2], ...]
def resize_image(image, height, width, mode="bilinear"):
if image.shape[:2] == (height, width):
return image, 1.0, np.ones_like(image[..., :1])
image = torch.from_numpy(image).permute(2, 0, 1)
minscale = min(height / image.shape[-2], width / image.shape[-1])
imre = torch.nn.functional.interpolate(
image[None],
scale_factor=minscale,
mode=mode,
align_corners=False if mode == "bilinear" else None,
recompute_scale_factor=True,
)[0]
# pyre-fixme[19]: Expected 1 positional argument.
imre_ = torch.zeros(image.shape[0], height, width)
imre_[:, 0 : imre.shape[1], 0 : imre.shape[2]] = imre
# pyre-fixme[6]: For 2nd param expected `int` but got `Optional[int]`.
# pyre-fixme[6]: For 3rd param expected `int` but got `Optional[int]`.
mask = torch.zeros(1, height, width)
mask[:, 0 : imre.shape[1], 0 : imre.shape[2]] = 1.0
return imre_.permute(1, 2, 0).numpy(), minscale, mask.permute(1, 2, 0).numpy()
# Code adapted from https://github.com/POSTECH-CVLab/PeRFception/data_util/co3d.py
def similarity_from_cameras(c2w, fix_rot=False, radius=1.0):
"""
Get a similarity transform to normalize dataset
from c2w (OpenCV convention) cameras
:param c2w: (N, 4)
:return T (4,4) , scale (float)
"""
t = c2w[:, :3, 3]
R = c2w[:, :3, :3]
# (1) Rotate the world so that z+ is the up axis
# we estimate the up axis by averaging the camera up axes
ups = np.sum(R * np.array([0, -1.0, 0]), axis=-1)
world_up = np.mean(ups, axis=0)
world_up /= np.linalg.norm(world_up)
up_camspace = np.array([0.0, 0.0, 1.0])
c = (up_camspace * world_up).sum()
cross = np.cross(world_up, up_camspace)
skew = np.array(
[
[0.0, -cross[2], cross[1]],
[cross[2], 0.0, -cross[0]],
[-cross[1], cross[0], 0.0],
]
)
if c > -1:
R_align = np.eye(3) + skew + (skew @ skew) * 1 / (1 + c)
else:
# In the unlikely case the original data has y+ up axis,
# rotate 180-deg about x axis
R_align = np.array([[-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]])
if fix_rot:
R_align = np.eye(3)
R = np.eye(3)
else:
R = R_align @ R
fwds = np.sum(R * np.array([0, 0.0, 1.0]), axis=-1)
t = (R_align @ t[..., None])[..., 0]
# (2) Recenter the scene using camera center rays
# find the closest point to the origin for each camera's center ray
nearest = t + (fwds * -t).sum(-1)[:, None] * fwds
# median for more robustness
translate = -np.median(nearest, axis=0)
# translate = -np.mean(t, axis=0) # DEBUG
transform = np.eye(4)
transform[:3, 3] = translate
transform[:3, :3] = R_align
# (3) Rescale the scene using camera distances
scale = radius / np.median(np.linalg.norm(t + translate, axis=-1))
return transform, scale
@dataclass
class Co3dDataModuleConfig:
root_dir: str = ""
batch_size: int = 1
height: int = 256
width: int = 256
load_preprocessed: bool = False
cam_scale_factor: float = 0.95
max_num_frames: int = 300
v2_mode: bool = True
use_mask: bool = True
box_crop: bool = True
box_crop_mask_thr: float = 0.4
box_crop_context: float = 0.3
train_num_rays: int = -1
train_views: Optional[list] = None
train_split: str = "train"
val_split: str = "val"
test_split: str = "test"
scale_radius: float = 1.0
use_random_camera: bool = True
random_camera: dict = field(default_factory=dict)
rays_noise_scale: float = 0.0
render_path: str = "circle"
class Co3dDatasetBase:
def setup(self, cfg, split):
self.split = split
self.rank = get_rank()
self.cfg: Co3dDataModuleConfig = cfg
if self.cfg.use_random_camera:
random_camera_cfg = parse_structured(
RandomCameraDataModuleConfig, self.cfg.get("random_camera", {})
)
if split == "train":
self.random_pose_generator = RandomCameraIterableDataset(
random_camera_cfg
)
else:
self.random_pose_generator = RandomCameraDataset(
random_camera_cfg, split
)
self.use_mask = self.cfg.use_mask
cam_scale_factor = self.cfg.cam_scale_factor
assert os.path.exists(self.cfg.root_dir), f"{self.cfg.root_dir} doesn't exist!"
cam_trans = np.diag(np.array([-1, -1, 1, 1], dtype=np.float32))
scene_number = self.cfg.root_dir.split("/")[-1]
json_path = os.path.join(self.cfg.root_dir, "..", "frame_annotations.jgz")
with gzip.open(json_path, "r") as fp:
all_frames_data = json.load(fp)
frame_data, images, intrinsics, extrinsics, image_sizes = [], [], [], [], []
masks = []
depths = []
for temporal_data in all_frames_data:
if temporal_data["sequence_name"] == scene_number:
frame_data.append(temporal_data)
self.all_directions = []
self.all_fg_masks = []
for frame in frame_data:
if "unseen" in frame["meta"]["frame_type"]:
continue
img = cv2.imread(
os.path.join(self.cfg.root_dir, "..", "..", frame["image"]["path"])
)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0
# TODO: use estimated depth
depth = _load_depth(
os.path.join(self.cfg.root_dir, "..", "..", frame["depth"]["path"]),
frame["depth"]["scale_adjustment"],
)[0]
H, W = frame["image"]["size"]
image_size = np.array([H, W])
fxy = np.array(frame["viewpoint"]["focal_length"])
cxy = np.array(frame["viewpoint"]["principal_point"])
R = np.array(frame["viewpoint"]["R"])
T = np.array(frame["viewpoint"]["T"])
if self.cfg.v2_mode:
min_HW = min(W, H)
image_size_half = np.array([W * 0.5, H * 0.5], dtype=np.float32)
scale_arr = np.array([min_HW * 0.5, min_HW * 0.5], dtype=np.float32)
fxy_x = fxy * scale_arr
prp_x = np.array([W * 0.5, H * 0.5], dtype=np.float32) - cxy * scale_arr
cxy = (image_size_half - prp_x) / image_size_half
fxy = fxy_x / image_size_half
scale_arr = np.array([W * 0.5, H * 0.5], dtype=np.float32)
focal = fxy * scale_arr
prp = -1.0 * (cxy - 1.0) * scale_arr
pose = np.eye(4)
pose[:3, :3] = R
pose[:3, 3:] = -R @ T[..., None]
# original camera: x left, y up, z in (Pytorch3D)
# transformed camera: x right, y down, z in (OpenCV)
pose = pose @ cam_trans
intrinsic = np.array(
[
[focal[0], 0.0, prp[0], 0.0],
[0.0, focal[1], prp[1], 0.0],
[0.0, 0.0, 1.0, 0.0],
[0.0, 0.0, 0.0, 1.0],
]
)
if any([np.all(pose == _pose) for _pose in extrinsics]):
continue
image_sizes.append(image_size)
intrinsics.append(intrinsic)
extrinsics.append(pose)
images.append(img)
depths.append(depth)
self.all_directions.append(get_ray_directions(W, H, focal, prp))
# vis_utils.vis_depth_pcd([depth], [pose], intrinsic, [(img * 255).astype(np.uint8)])
if self.use_mask:
mask = np.array(
Image.open(
os.path.join(
self.cfg.root_dir, "..", "..", frame["mask"]["path"]
)
)
)
mask = mask.astype(np.float32) / 255.0 # (h, w)
else:
mask = torch.ones_like(img[..., 0])
self.all_fg_masks.append(mask)
intrinsics = np.stack(intrinsics)
extrinsics = np.stack(extrinsics)
image_sizes = np.stack(image_sizes)
self.all_directions = torch.stack(self.all_directions, dim=0)
self.all_fg_masks = np.stack(self.all_fg_masks, 0)
H_median, W_median = np.median(
np.stack([image_size for image_size in image_sizes]), axis=0
)
H_inlier = np.abs(image_sizes[:, 0] - H_median) / H_median < 0.1
W_inlier = np.abs(image_sizes[:, 1] - W_median) / W_median < 0.1
inlier = np.logical_and(H_inlier, W_inlier)
dists = np.linalg.norm(
extrinsics[:, :3, 3] - np.median(extrinsics[:, :3, 3], axis=0), axis=-1
)
med = np.median(dists)
good_mask = dists < (med * 5.0)
inlier = np.logical_and(inlier, good_mask)
if inlier.sum() != 0:
intrinsics = intrinsics[inlier]
extrinsics = extrinsics[inlier]
image_sizes = image_sizes[inlier]
images = [images[i] for i in range(len(inlier)) if inlier[i]]
depths = [depths[i] for i in range(len(inlier)) if inlier[i]]
self.all_directions = self.all_directions[inlier]
self.all_fg_masks = self.all_fg_masks[inlier]
extrinsics = np.stack(extrinsics)
T, sscale = similarity_from_cameras(extrinsics, radius=self.cfg.scale_radius)
extrinsics = T @ extrinsics
extrinsics[:, :3, 3] *= sscale * cam_scale_factor
depths = [depth * sscale * cam_scale_factor for depth in depths]
num_frames = len(extrinsics)
if self.cfg.max_num_frames < num_frames:
num_frames = self.cfg.max_num_frames
extrinsics = extrinsics[:num_frames]
intrinsics = intrinsics[:num_frames]
image_sizes = image_sizes[:num_frames]
images = images[:num_frames]
depths = depths[:num_frames]
self.all_directions = self.all_directions[:num_frames]
self.all_fg_masks = self.all_fg_masks[:num_frames]
if self.cfg.box_crop:
print("cropping...")
crop_masks = []
crop_imgs = []
crop_depths = []
crop_directions = []
crop_xywhs = []
max_sl = 0
for i in range(num_frames):
bbox_xywh = np.array(
get_bbox_from_mask(self.all_fg_masks[i], self.cfg.box_crop_mask_thr)
)
clamp_bbox_xywh = get_clamp_bbox(bbox_xywh, self.cfg.box_crop_context)
max_sl = max(clamp_bbox_xywh[2] - clamp_bbox_xywh[0], max_sl)
max_sl = max(clamp_bbox_xywh[3] - clamp_bbox_xywh[1], max_sl)
mask = crop_around_box(self.all_fg_masks[i][..., None], clamp_bbox_xywh)
img = crop_around_box(images[i], clamp_bbox_xywh)
depth = crop_around_box(depths[i][..., None], clamp_bbox_xywh)
# resize to the same shape
mask, _, _ = resize_image(mask, self.cfg.height, self.cfg.width)
depth, _, _ = resize_image(depth, self.cfg.height, self.cfg.width)
img, scale, _ = resize_image(img, self.cfg.height, self.cfg.width)
fx, fy, cx, cy = (
intrinsics[i][0, 0],
intrinsics[i][1, 1],
intrinsics[i][0, 2],
intrinsics[i][1, 2],
)
crop_masks.append(mask)
crop_imgs.append(img)
crop_depths.append(depth)
crop_xywhs.append(clamp_bbox_xywh)
crop_directions.append(
get_ray_directions(
self.cfg.height,
self.cfg.width,
(fx * scale, fy * scale),
(
(cx - clamp_bbox_xywh[0]) * scale,
(cy - clamp_bbox_xywh[1]) * scale,
),
)
)
# # pad all images to the same shape
# for i in range(num_frames):
# uh = (max_sl - crop_imgs[i].shape[0]) // 2 # h
# dh = max_sl - crop_imgs[i].shape[0] - uh
# lw = (max_sl - crop_imgs[i].shape[1]) // 2
# rw = max_sl - crop_imgs[i].shape[1] - lw
# crop_masks[i] = np.pad(crop_masks[i], pad_width=((uh, dh), (lw, rw), (0, 0)), mode='constant', constant_values=0.)
# crop_imgs[i] = np.pad(crop_imgs[i], pad_width=((uh, dh), (lw, rw), (0, 0)), mode='constant', constant_values=1.)
# crop_depths[i] = np.pad(crop_depths[i], pad_width=((uh, dh), (lw, rw), (0, 0)), mode='constant', constant_values=0.)
# fx, fy, cx, cy = intrinsics[i][0, 0], intrinsics[i][1, 1], intrinsics[i][0, 2], intrinsics[i][1, 2]
# crop_directions.append(get_ray_directions(max_sl, max_sl, (fx, fy), (cx - crop_xywhs[i][0] + lw, cy - crop_xywhs[i][1] + uh)))
# self.w, self.h = max_sl, max_sl
images = crop_imgs
depths = crop_depths
self.all_fg_masks = np.stack(crop_masks, 0)
self.all_directions = torch.from_numpy(np.stack(crop_directions, 0))
# self.width, self.height = self.w, self.h
self.all_c2w = torch.from_numpy(
(
extrinsics
@ np.diag(np.array([1, -1, -1, 1], dtype=np.float32))[None, ...]
)[..., :3, :4]
)
self.all_images = torch.from_numpy(np.stack(images, axis=0))
self.all_depths = torch.from_numpy(np.stack(depths, axis=0))
# self.all_c2w = []
# self.all_images = []
# for i in range(num_frames):
# # convert to: x right, y up, z back (OpenGL)
# c2w = torch.from_numpy(extrinsics[i] @ np.diag(np.array([1, -1, -1, 1], dtype=np.float32)))[:3, :4]
# self.all_c2w.append(c2w)
# img = torch.from_numpy(images[i])
# self.all_images.append(img)
# TODO: save data for fast loading next time
if self.cfg.load_preprocessed and os.path.exists(
self.cfg.root_dir, "nerf_preprocessed.npy"
):
pass
i_all = np.arange(num_frames)
if self.cfg.train_views is None:
i_test = i_all[::10]
i_val = i_test
i_train = np.array([i for i in i_all if not i in i_test])
else:
# use provided views
i_train = self.cfg.train_views
i_test = np.array([i for i in i_all if not i in i_train])
i_val = i_test
if self.split == "train":
print("[INFO] num of train views: ", len(i_train))
print("[INFO] train view ids = ", i_train)
i_split = {"train": i_train, "val": i_val, "test": i_all}
# if self.split == 'test':
# self.all_c2w = create_spheric_poses(self.all_c2w[:,:,3], n_steps=self.cfg.n_test_traj_steps)
# self.all_images = torch.zeros((self.cfg.n_test_traj_steps, self.h, self.w, 3), dtype=torch.float32)
# self.all_fg_masks = torch.zeros((self.cfg.n_test_traj_steps, self.h, self.w), dtype=torch.float32)
# self.directions = self.directions[0].to(self.rank)
# else:
self.all_images, self.all_c2w = (
self.all_images[i_split[self.split]],
self.all_c2w[i_split[self.split]],
)
self.all_directions = self.all_directions[i_split[self.split]].to(self.rank)
self.all_fg_masks = torch.from_numpy(self.all_fg_masks)[i_split[self.split]]
self.all_depths = self.all_depths[i_split[self.split]]
# if render_random_pose:
# render_poses = random_pose(extrinsics[i_all], 50)
# elif render_scene_interp:
# render_poses = pose_interp(extrinsics[i_all], interp_fac)
# render_poses = spherical_poses(sscale * cam_scale_factor * np.eye(4))
# near, far = 0., 1.
# ndc_coeffs = (-1., -1.)
self.all_c2w, self.all_images, self.all_fg_masks = (
self.all_c2w.float().to(self.rank),
self.all_images.float().to(self.rank),
self.all_fg_masks.float().to(self.rank),
)
# self.all_c2w, self.all_images, self.all_fg_masks = \
# self.all_c2w.float(), \
# self.all_images.float(), \
# self.all_fg_masks.float()
self.all_depths = self.all_depths.float().to(self.rank)
def get_all_images(self):
return self.all_images
class Co3dDataset(Dataset, Co3dDatasetBase):
def __init__(self, cfg, split):
self.setup(cfg, split)
def __len__(self):
if self.split == "test":
if self.cfg.render_path == "circle":
return len(self.random_pose_generator)
else:
return len(self.all_images)
else:
return len(self.random_pose_generator)
# return len(self.all_images)
def prepare_data(self, index):
# prepare batch data here
c2w = self.all_c2w[index]
light_positions = c2w[..., :3, -1]
directions = self.all_directions[index]
rays_o, rays_d = get_rays(
directions, c2w, keepdim=True, noise_scale=self.cfg.rays_noise_scale
)
rgb = self.all_images[index]
depth = self.all_depths[index]
mask = self.all_fg_masks[index]
# TODO: get projection matrix and mvp matrix
# proj_mtx = get_projection_matrix()
batch = {
"rays_o": rays_o,
"rays_d": rays_d,
"mvp_mtx": 0,
"camera_positions": c2w[..., :3, -1],
"light_positions": light_positions,
"elevation": 0,
"azimuth": 0,
"camera_distances": 0,
"rgb": rgb,
"depth": depth,
"mask": mask,
}
# c2w = self.all_c2w[index]
# return {
# 'index': index,
# 'c2w': c2w,
# 'light_positions': c2w[:3, -1],
# 'H': self.h,
# 'W': self.w
# }
return batch
def __getitem__(self, index):
if self.split == "test":
if self.cfg.render_path == "circle":
return self.random_pose_generator[index]
else:
return self.prepare_data(index)
else:
return self.random_pose_generator[index]
class Co3dIterableDataset(IterableDataset, Co3dDatasetBase):
def __init__(self, cfg, split):
self.setup(cfg, split)
self.idx = 0
self.image_perm = torch.randperm(len(self.all_images))
def __iter__(self):
while True:
yield {}
def collate(self, batch) -> Dict[str, Any]:
idx = self.image_perm[self.idx]
# prepare batch data here
c2w = self.all_c2w[idx][None]
light_positions = c2w[..., :3, -1]
directions = self.all_directions[idx][None]
rays_o, rays_d = get_rays(
directions, c2w, keepdim=True, noise_scale=self.cfg.rays_noise_scale
)
rgb = self.all_images[idx][None]
depth = self.all_depths[idx][None]
mask = self.all_fg_masks[idx][None]
if (
self.cfg.train_num_rays != -1
and self.cfg.train_num_rays < self.cfg.height * self.cfg.width
):
_, height, width, _ = rays_o.shape
x = torch.randint(
0, width, size=(self.cfg.train_num_rays,), device=rays_o.device
)
y = torch.randint(
0, height, size=(self.cfg.train_num_rays,), device=rays_o.device
)
rays_o = rays_o[:, y, x].unsqueeze(-2)
rays_d = rays_d[:, y, x].unsqueeze(-2)
directions = directions[:, y, x].unsqueeze(-2)
rgb = rgb[:, y, x].unsqueeze(-2)
mask = mask[:, y, x].unsqueeze(-2)
depth = depth[:, y, x].unsqueeze(-2)
# TODO: get projection matrix and mvp matrix
# proj_mtx = get_projection_matrix()
batch = {
"rays_o": rays_o,
"rays_d": rays_d,
"mvp_mtx": None,
"camera_positions": c2w[..., :3, -1],
"light_positions": light_positions,
"elevation": None,
"azimuth": None,
"camera_distances": None,
"rgb": rgb,
"depth": depth,
"mask": mask,
}
if self.cfg.use_random_camera:
batch["random_camera"] = self.random_pose_generator.collate(None)
# prepare batch data in system
# c2w = self.all_c2w[idx][None]
# batch = {
# 'index': torch.tensor([idx]),
# 'c2w': c2w,
# 'light_positions': c2w[..., :3, -1],
# 'H': self.h,
# 'W': self.w
# }
self.idx += 1
if self.idx == len(self.all_images):
self.idx = 0
self.image_perm = torch.randperm(len(self.all_images))
# self.idx = (self.idx + 1) % len(self.all_images)
return batch
@register("co3d-datamodule")
class Co3dDataModule(pl.LightningDataModule):
def __init__(self, cfg: Optional[Union[dict, DictConfig]] = None) -> None:
super().__init__()
self.cfg = parse_structured(Co3dDataModuleConfig, cfg)
def setup(self, stage=None):
if stage in [None, "fit"]:
self.train_dataset = Co3dIterableDataset(self.cfg, self.cfg.train_split)
if stage in [None, "fit", "validate"]:
self.val_dataset = Co3dDataset(self.cfg, self.cfg.val_split)
if stage in [None, "test", "predict"]:
self.test_dataset = Co3dDataset(self.cfg, self.cfg.test_split)
def prepare_data(self):
pass
def general_loader(self, dataset, batch_size, collate_fn=None) -> DataLoader:
sampler = None
return DataLoader(
dataset,
num_workers=0,
batch_size=batch_size,
# pin_memory=True,
collate_fn=collate_fn,
)
def train_dataloader(self):
return self.general_loader(
self.train_dataset, batch_size=1, collate_fn=self.train_dataset.collate
)
def val_dataloader(self):
return self.general_loader(self.val_dataset, batch_size=1)
def test_dataloader(self):
return self.general_loader(self.test_dataset, batch_size=1)
def predict_dataloader(self):
return self.general_loader(self.test_dataset, batch_size=1)
|