File size: 25,947 Bytes
2fa4776
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
import gzip
import json
import os
import warnings
from dataclasses import dataclass, field
from typing import List

import cv2
import numpy as np
import pytorch_lightning as pl
import torch
import torchvision.transforms.functional as TF
from PIL import Image
from torch.utils.data import DataLoader, Dataset, IterableDataset

from threestudio import register
from threestudio.data.uncond import (
    RandomCameraDataModuleConfig,
    RandomCameraDataset,
    RandomCameraIterableDataset,
)
from threestudio.utils.config import parse_structured
from threestudio.utils.misc import get_rank
from threestudio.utils.ops import (
    get_mvp_matrix,
    get_projection_matrix,
    get_ray_directions,
    get_rays,
)
from threestudio.utils.typing import *


def _load_16big_png_depth(depth_png) -> np.ndarray:
    with Image.open(depth_png) as depth_pil:
        # the image is stored with 16-bit depth but PIL reads it as I (32 bit).
        # we cast it to uint16, then reinterpret as float16, then cast to float32
        depth = (
            np.frombuffer(np.array(depth_pil, dtype=np.uint16), dtype=np.float16)
            .astype(np.float32)
            .reshape((depth_pil.size[1], depth_pil.size[0]))
        )
    return depth


def _load_depth(path, scale_adjustment) -> np.ndarray:
    if not path.lower().endswith(".png"):
        raise ValueError('unsupported depth file name "%s"' % path)

    d = _load_16big_png_depth(path) * scale_adjustment
    d[~np.isfinite(d)] = 0.0
    return d[None]  # fake feature channel


# Code adapted from https://github.com/eldar/snes/blob/473ff2b1f6/3rdparty/co3d/dataset/co3d_dataset.py
def _get_1d_bounds(arr):
    nz = np.flatnonzero(arr)
    return nz[0], nz[-1]


def get_bbox_from_mask(mask, thr, decrease_quant=0.05):
    # bbox in xywh
    masks_for_box = np.zeros_like(mask)
    while masks_for_box.sum() <= 1.0:
        masks_for_box = (mask > thr).astype(np.float32)
        thr -= decrease_quant
    if thr <= 0.0:
        warnings.warn(f"Empty masks_for_bbox (thr={thr}) => using full image.")

    x0, x1 = _get_1d_bounds(masks_for_box.sum(axis=-2))
    y0, y1 = _get_1d_bounds(masks_for_box.sum(axis=-1))

    return x0, y0, x1 - x0, y1 - y0


def get_clamp_bbox(bbox, box_crop_context=0.0, impath=""):
    # box_crop_context: rate of expansion for bbox
    # returns possibly expanded bbox xyxy as float

    # increase box size
    if box_crop_context > 0.0:
        c = box_crop_context
        bbox = bbox.astype(np.float32)
        bbox[0] -= bbox[2] * c / 2
        bbox[1] -= bbox[3] * c / 2
        bbox[2] += bbox[2] * c
        bbox[3] += bbox[3] * c

    if (bbox[2:] <= 1.0).any():
        warnings.warn(f"squashed image {impath}!!")
        return None

    # bbox[2:] = np.clip(bbox[2:], 2, )
    bbox[2:] = np.maximum(bbox[2:], 2)
    bbox[2:] += bbox[0:2] + 1  # convert to [xmin, ymin, xmax, ymax]
    # +1 because upper bound is not inclusive

    return bbox


def crop_around_box(tensor, bbox, impath=""):
    bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0.0, tensor.shape[-2])
    bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0.0, tensor.shape[-3])
    bbox = bbox.round().astype(np.longlong)
    return tensor[bbox[1] : bbox[3], bbox[0] : bbox[2], ...]


def resize_image(image, height, width, mode="bilinear"):
    if image.shape[:2] == (height, width):
        return image, 1.0, np.ones_like(image[..., :1])

    image = torch.from_numpy(image).permute(2, 0, 1)
    minscale = min(height / image.shape[-2], width / image.shape[-1])
    imre = torch.nn.functional.interpolate(
        image[None],
        scale_factor=minscale,
        mode=mode,
        align_corners=False if mode == "bilinear" else None,
        recompute_scale_factor=True,
    )[0]

    # pyre-fixme[19]: Expected 1 positional argument.
    imre_ = torch.zeros(image.shape[0], height, width)
    imre_[:, 0 : imre.shape[1], 0 : imre.shape[2]] = imre
    # pyre-fixme[6]: For 2nd param expected `int` but got `Optional[int]`.
    # pyre-fixme[6]: For 3rd param expected `int` but got `Optional[int]`.
    mask = torch.zeros(1, height, width)
    mask[:, 0 : imre.shape[1], 0 : imre.shape[2]] = 1.0
    return imre_.permute(1, 2, 0).numpy(), minscale, mask.permute(1, 2, 0).numpy()


# Code adapted from https://github.com/POSTECH-CVLab/PeRFception/data_util/co3d.py
def similarity_from_cameras(c2w, fix_rot=False, radius=1.0):
    """
    Get a similarity transform to normalize dataset
    from c2w (OpenCV convention) cameras
    :param c2w: (N, 4)
    :return T (4,4) , scale (float)
    """
    t = c2w[:, :3, 3]
    R = c2w[:, :3, :3]

    # (1) Rotate the world so that z+ is the up axis
    # we estimate the up axis by averaging the camera up axes
    ups = np.sum(R * np.array([0, -1.0, 0]), axis=-1)
    world_up = np.mean(ups, axis=0)
    world_up /= np.linalg.norm(world_up)

    up_camspace = np.array([0.0, 0.0, 1.0])
    c = (up_camspace * world_up).sum()
    cross = np.cross(world_up, up_camspace)
    skew = np.array(
        [
            [0.0, -cross[2], cross[1]],
            [cross[2], 0.0, -cross[0]],
            [-cross[1], cross[0], 0.0],
        ]
    )
    if c > -1:
        R_align = np.eye(3) + skew + (skew @ skew) * 1 / (1 + c)
    else:
        # In the unlikely case the original data has y+ up axis,
        # rotate 180-deg about x axis
        R_align = np.array([[-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]])

    if fix_rot:
        R_align = np.eye(3)
        R = np.eye(3)
    else:
        R = R_align @ R
    fwds = np.sum(R * np.array([0, 0.0, 1.0]), axis=-1)
    t = (R_align @ t[..., None])[..., 0]

    # (2) Recenter the scene using camera center rays
    # find the closest point to the origin for each camera's center ray
    nearest = t + (fwds * -t).sum(-1)[:, None] * fwds

    # median for more robustness
    translate = -np.median(nearest, axis=0)

    #  translate = -np.mean(t, axis=0)  # DEBUG

    transform = np.eye(4)
    transform[:3, 3] = translate
    transform[:3, :3] = R_align

    # (3) Rescale the scene using camera distances
    scale = radius / np.median(np.linalg.norm(t + translate, axis=-1))

    return transform, scale


@dataclass
class Co3dDataModuleConfig:
    root_dir: str = ""
    batch_size: int = 1
    height: int = 256
    width: int = 256
    load_preprocessed: bool = False
    cam_scale_factor: float = 0.95
    max_num_frames: int = 300
    v2_mode: bool = True
    use_mask: bool = True
    box_crop: bool = True
    box_crop_mask_thr: float = 0.4
    box_crop_context: float = 0.3
    train_num_rays: int = -1
    train_views: Optional[list] = None
    train_split: str = "train"
    val_split: str = "val"
    test_split: str = "test"
    scale_radius: float = 1.0
    use_random_camera: bool = True
    random_camera: dict = field(default_factory=dict)
    rays_noise_scale: float = 0.0
    render_path: str = "circle"


class Co3dDatasetBase:
    def setup(self, cfg, split):
        self.split = split
        self.rank = get_rank()
        self.cfg: Co3dDataModuleConfig = cfg

        if self.cfg.use_random_camera:
            random_camera_cfg = parse_structured(
                RandomCameraDataModuleConfig, self.cfg.get("random_camera", {})
            )
            if split == "train":
                self.random_pose_generator = RandomCameraIterableDataset(
                    random_camera_cfg
                )
            else:
                self.random_pose_generator = RandomCameraDataset(
                    random_camera_cfg, split
                )

        self.use_mask = self.cfg.use_mask
        cam_scale_factor = self.cfg.cam_scale_factor

        assert os.path.exists(self.cfg.root_dir), f"{self.cfg.root_dir} doesn't exist!"

        cam_trans = np.diag(np.array([-1, -1, 1, 1], dtype=np.float32))
        scene_number = self.cfg.root_dir.split("/")[-1]
        json_path = os.path.join(self.cfg.root_dir, "..", "frame_annotations.jgz")
        with gzip.open(json_path, "r") as fp:
            all_frames_data = json.load(fp)

        frame_data, images, intrinsics, extrinsics, image_sizes = [], [], [], [], []
        masks = []
        depths = []

        for temporal_data in all_frames_data:
            if temporal_data["sequence_name"] == scene_number:
                frame_data.append(temporal_data)

        self.all_directions = []
        self.all_fg_masks = []
        for frame in frame_data:
            if "unseen" in frame["meta"]["frame_type"]:
                continue
            img = cv2.imread(
                os.path.join(self.cfg.root_dir, "..", "..", frame["image"]["path"])
            )
            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0

            # TODO: use estimated depth
            depth = _load_depth(
                os.path.join(self.cfg.root_dir, "..", "..", frame["depth"]["path"]),
                frame["depth"]["scale_adjustment"],
            )[0]

            H, W = frame["image"]["size"]
            image_size = np.array([H, W])
            fxy = np.array(frame["viewpoint"]["focal_length"])
            cxy = np.array(frame["viewpoint"]["principal_point"])
            R = np.array(frame["viewpoint"]["R"])
            T = np.array(frame["viewpoint"]["T"])

            if self.cfg.v2_mode:
                min_HW = min(W, H)
                image_size_half = np.array([W * 0.5, H * 0.5], dtype=np.float32)
                scale_arr = np.array([min_HW * 0.5, min_HW * 0.5], dtype=np.float32)
                fxy_x = fxy * scale_arr
                prp_x = np.array([W * 0.5, H * 0.5], dtype=np.float32) - cxy * scale_arr
                cxy = (image_size_half - prp_x) / image_size_half
                fxy = fxy_x / image_size_half

            scale_arr = np.array([W * 0.5, H * 0.5], dtype=np.float32)
            focal = fxy * scale_arr
            prp = -1.0 * (cxy - 1.0) * scale_arr

            pose = np.eye(4)
            pose[:3, :3] = R
            pose[:3, 3:] = -R @ T[..., None]
            # original camera: x left, y up, z in (Pytorch3D)
            # transformed camera: x right, y down, z in (OpenCV)
            pose = pose @ cam_trans
            intrinsic = np.array(
                [
                    [focal[0], 0.0, prp[0], 0.0],
                    [0.0, focal[1], prp[1], 0.0],
                    [0.0, 0.0, 1.0, 0.0],
                    [0.0, 0.0, 0.0, 1.0],
                ]
            )

            if any([np.all(pose == _pose) for _pose in extrinsics]):
                continue

            image_sizes.append(image_size)
            intrinsics.append(intrinsic)
            extrinsics.append(pose)
            images.append(img)
            depths.append(depth)
            self.all_directions.append(get_ray_directions(W, H, focal, prp))

            # vis_utils.vis_depth_pcd([depth], [pose], intrinsic, [(img * 255).astype(np.uint8)])

            if self.use_mask:
                mask = np.array(
                    Image.open(
                        os.path.join(
                            self.cfg.root_dir, "..", "..", frame["mask"]["path"]
                        )
                    )
                )
                mask = mask.astype(np.float32) / 255.0  # (h, w)
            else:
                mask = torch.ones_like(img[..., 0])
            self.all_fg_masks.append(mask)

        intrinsics = np.stack(intrinsics)
        extrinsics = np.stack(extrinsics)
        image_sizes = np.stack(image_sizes)
        self.all_directions = torch.stack(self.all_directions, dim=0)
        self.all_fg_masks = np.stack(self.all_fg_masks, 0)

        H_median, W_median = np.median(
            np.stack([image_size for image_size in image_sizes]), axis=0
        )

        H_inlier = np.abs(image_sizes[:, 0] - H_median) / H_median < 0.1
        W_inlier = np.abs(image_sizes[:, 1] - W_median) / W_median < 0.1
        inlier = np.logical_and(H_inlier, W_inlier)
        dists = np.linalg.norm(
            extrinsics[:, :3, 3] - np.median(extrinsics[:, :3, 3], axis=0), axis=-1
        )
        med = np.median(dists)
        good_mask = dists < (med * 5.0)
        inlier = np.logical_and(inlier, good_mask)

        if inlier.sum() != 0:
            intrinsics = intrinsics[inlier]
            extrinsics = extrinsics[inlier]
            image_sizes = image_sizes[inlier]
            images = [images[i] for i in range(len(inlier)) if inlier[i]]
            depths = [depths[i] for i in range(len(inlier)) if inlier[i]]
            self.all_directions = self.all_directions[inlier]
            self.all_fg_masks = self.all_fg_masks[inlier]

        extrinsics = np.stack(extrinsics)
        T, sscale = similarity_from_cameras(extrinsics, radius=self.cfg.scale_radius)
        extrinsics = T @ extrinsics

        extrinsics[:, :3, 3] *= sscale * cam_scale_factor

        depths = [depth * sscale * cam_scale_factor for depth in depths]

        num_frames = len(extrinsics)

        if self.cfg.max_num_frames < num_frames:
            num_frames = self.cfg.max_num_frames
            extrinsics = extrinsics[:num_frames]
            intrinsics = intrinsics[:num_frames]
            image_sizes = image_sizes[:num_frames]
            images = images[:num_frames]
            depths = depths[:num_frames]
            self.all_directions = self.all_directions[:num_frames]
            self.all_fg_masks = self.all_fg_masks[:num_frames]

        if self.cfg.box_crop:
            print("cropping...")
            crop_masks = []
            crop_imgs = []
            crop_depths = []
            crop_directions = []
            crop_xywhs = []
            max_sl = 0
            for i in range(num_frames):
                bbox_xywh = np.array(
                    get_bbox_from_mask(self.all_fg_masks[i], self.cfg.box_crop_mask_thr)
                )
                clamp_bbox_xywh = get_clamp_bbox(bbox_xywh, self.cfg.box_crop_context)
                max_sl = max(clamp_bbox_xywh[2] - clamp_bbox_xywh[0], max_sl)
                max_sl = max(clamp_bbox_xywh[3] - clamp_bbox_xywh[1], max_sl)
                mask = crop_around_box(self.all_fg_masks[i][..., None], clamp_bbox_xywh)
                img = crop_around_box(images[i], clamp_bbox_xywh)
                depth = crop_around_box(depths[i][..., None], clamp_bbox_xywh)

                # resize to the same shape
                mask, _, _ = resize_image(mask, self.cfg.height, self.cfg.width)
                depth, _, _ = resize_image(depth, self.cfg.height, self.cfg.width)
                img, scale, _ = resize_image(img, self.cfg.height, self.cfg.width)
                fx, fy, cx, cy = (
                    intrinsics[i][0, 0],
                    intrinsics[i][1, 1],
                    intrinsics[i][0, 2],
                    intrinsics[i][1, 2],
                )

                crop_masks.append(mask)
                crop_imgs.append(img)
                crop_depths.append(depth)
                crop_xywhs.append(clamp_bbox_xywh)
                crop_directions.append(
                    get_ray_directions(
                        self.cfg.height,
                        self.cfg.width,
                        (fx * scale, fy * scale),
                        (
                            (cx - clamp_bbox_xywh[0]) * scale,
                            (cy - clamp_bbox_xywh[1]) * scale,
                        ),
                    )
                )

            # # pad all images to the same shape
            # for i in range(num_frames):
            #     uh = (max_sl - crop_imgs[i].shape[0]) // 2 # h
            #     dh = max_sl - crop_imgs[i].shape[0] - uh
            #     lw = (max_sl - crop_imgs[i].shape[1]) // 2
            #     rw = max_sl - crop_imgs[i].shape[1] - lw
            #     crop_masks[i] = np.pad(crop_masks[i], pad_width=((uh, dh), (lw, rw), (0, 0)), mode='constant', constant_values=0.)
            #     crop_imgs[i] = np.pad(crop_imgs[i], pad_width=((uh, dh), (lw, rw), (0, 0)), mode='constant', constant_values=1.)
            #     crop_depths[i] = np.pad(crop_depths[i], pad_width=((uh, dh), (lw, rw), (0, 0)), mode='constant', constant_values=0.)
            #     fx, fy, cx, cy = intrinsics[i][0, 0], intrinsics[i][1, 1], intrinsics[i][0, 2], intrinsics[i][1, 2]
            #     crop_directions.append(get_ray_directions(max_sl, max_sl, (fx, fy), (cx - crop_xywhs[i][0] + lw, cy - crop_xywhs[i][1] + uh)))
            # self.w, self.h = max_sl, max_sl

            images = crop_imgs
            depths = crop_depths
            self.all_fg_masks = np.stack(crop_masks, 0)
            self.all_directions = torch.from_numpy(np.stack(crop_directions, 0))

        # self.width, self.height = self.w, self.h

        self.all_c2w = torch.from_numpy(
            (
                extrinsics
                @ np.diag(np.array([1, -1, -1, 1], dtype=np.float32))[None, ...]
            )[..., :3, :4]
        )
        self.all_images = torch.from_numpy(np.stack(images, axis=0))
        self.all_depths = torch.from_numpy(np.stack(depths, axis=0))

        # self.all_c2w = []
        # self.all_images = []
        # for i in range(num_frames):
        #     # convert to: x right, y up, z back (OpenGL)
        #     c2w = torch.from_numpy(extrinsics[i] @ np.diag(np.array([1, -1, -1, 1], dtype=np.float32)))[:3, :4]
        #     self.all_c2w.append(c2w)
        #     img = torch.from_numpy(images[i])
        #     self.all_images.append(img)

        # TODO: save data for fast loading next time
        if self.cfg.load_preprocessed and os.path.exists(
            self.cfg.root_dir, "nerf_preprocessed.npy"
        ):
            pass

        i_all = np.arange(num_frames)

        if self.cfg.train_views is None:
            i_test = i_all[::10]
            i_val = i_test
            i_train = np.array([i for i in i_all if not i in i_test])
        else:
            # use provided views
            i_train = self.cfg.train_views
            i_test = np.array([i for i in i_all if not i in i_train])
            i_val = i_test

        if self.split == "train":
            print("[INFO] num of train views: ", len(i_train))
            print("[INFO] train view ids = ", i_train)

        i_split = {"train": i_train, "val": i_val, "test": i_all}

        # if self.split == 'test':
        #     self.all_c2w = create_spheric_poses(self.all_c2w[:,:,3], n_steps=self.cfg.n_test_traj_steps)
        #     self.all_images = torch.zeros((self.cfg.n_test_traj_steps, self.h, self.w, 3), dtype=torch.float32)
        #     self.all_fg_masks = torch.zeros((self.cfg.n_test_traj_steps, self.h, self.w), dtype=torch.float32)
        #     self.directions = self.directions[0].to(self.rank)
        # else:
        self.all_images, self.all_c2w = (
            self.all_images[i_split[self.split]],
            self.all_c2w[i_split[self.split]],
        )
        self.all_directions = self.all_directions[i_split[self.split]].to(self.rank)
        self.all_fg_masks = torch.from_numpy(self.all_fg_masks)[i_split[self.split]]
        self.all_depths = self.all_depths[i_split[self.split]]
        # if render_random_pose:
        #     render_poses = random_pose(extrinsics[i_all], 50)
        # elif render_scene_interp:
        #     render_poses = pose_interp(extrinsics[i_all], interp_fac)
        # render_poses = spherical_poses(sscale * cam_scale_factor * np.eye(4))

        # near, far = 0., 1.
        # ndc_coeffs = (-1., -1.)

        self.all_c2w, self.all_images, self.all_fg_masks = (
            self.all_c2w.float().to(self.rank),
            self.all_images.float().to(self.rank),
            self.all_fg_masks.float().to(self.rank),
        )

        # self.all_c2w, self.all_images, self.all_fg_masks = \
        #         self.all_c2w.float(), \
        #         self.all_images.float(), \
        #         self.all_fg_masks.float()

        self.all_depths = self.all_depths.float().to(self.rank)

    def get_all_images(self):
        return self.all_images


class Co3dDataset(Dataset, Co3dDatasetBase):
    def __init__(self, cfg, split):
        self.setup(cfg, split)

    def __len__(self):
        if self.split == "test":
            if self.cfg.render_path == "circle":
                return len(self.random_pose_generator)
            else:
                return len(self.all_images)
        else:
            return len(self.random_pose_generator)
            # return len(self.all_images)

    def prepare_data(self, index):
        # prepare batch data here
        c2w = self.all_c2w[index]
        light_positions = c2w[..., :3, -1]
        directions = self.all_directions[index]
        rays_o, rays_d = get_rays(
            directions, c2w, keepdim=True, noise_scale=self.cfg.rays_noise_scale
        )
        rgb = self.all_images[index]
        depth = self.all_depths[index]
        mask = self.all_fg_masks[index]

        # TODO: get projection matrix and mvp matrix
        # proj_mtx = get_projection_matrix()

        batch = {
            "rays_o": rays_o,
            "rays_d": rays_d,
            "mvp_mtx": 0,
            "camera_positions": c2w[..., :3, -1],
            "light_positions": light_positions,
            "elevation": 0,
            "azimuth": 0,
            "camera_distances": 0,
            "rgb": rgb,
            "depth": depth,
            "mask": mask,
        }

        # c2w = self.all_c2w[index]
        # return {
        #     'index': index,
        #     'c2w': c2w,
        #     'light_positions': c2w[:3, -1],
        #     'H': self.h,
        #     'W': self.w
        # }

        return batch

    def __getitem__(self, index):
        if self.split == "test":
            if self.cfg.render_path == "circle":
                return self.random_pose_generator[index]
            else:
                return self.prepare_data(index)
        else:
            return self.random_pose_generator[index]


class Co3dIterableDataset(IterableDataset, Co3dDatasetBase):
    def __init__(self, cfg, split):
        self.setup(cfg, split)
        self.idx = 0
        self.image_perm = torch.randperm(len(self.all_images))

    def __iter__(self):
        while True:
            yield {}

    def collate(self, batch) -> Dict[str, Any]:
        idx = self.image_perm[self.idx]
        # prepare batch data here
        c2w = self.all_c2w[idx][None]
        light_positions = c2w[..., :3, -1]
        directions = self.all_directions[idx][None]
        rays_o, rays_d = get_rays(
            directions, c2w, keepdim=True, noise_scale=self.cfg.rays_noise_scale
        )
        rgb = self.all_images[idx][None]
        depth = self.all_depths[idx][None]
        mask = self.all_fg_masks[idx][None]

        if (
            self.cfg.train_num_rays != -1
            and self.cfg.train_num_rays < self.cfg.height * self.cfg.width
        ):
            _, height, width, _ = rays_o.shape
            x = torch.randint(
                0, width, size=(self.cfg.train_num_rays,), device=rays_o.device
            )
            y = torch.randint(
                0, height, size=(self.cfg.train_num_rays,), device=rays_o.device
            )

            rays_o = rays_o[:, y, x].unsqueeze(-2)
            rays_d = rays_d[:, y, x].unsqueeze(-2)
            directions = directions[:, y, x].unsqueeze(-2)
            rgb = rgb[:, y, x].unsqueeze(-2)
            mask = mask[:, y, x].unsqueeze(-2)
            depth = depth[:, y, x].unsqueeze(-2)

        # TODO: get projection matrix and mvp matrix
        # proj_mtx = get_projection_matrix()

        batch = {
            "rays_o": rays_o,
            "rays_d": rays_d,
            "mvp_mtx": None,
            "camera_positions": c2w[..., :3, -1],
            "light_positions": light_positions,
            "elevation": None,
            "azimuth": None,
            "camera_distances": None,
            "rgb": rgb,
            "depth": depth,
            "mask": mask,
        }

        if self.cfg.use_random_camera:
            batch["random_camera"] = self.random_pose_generator.collate(None)

        # prepare batch data in system
        # c2w = self.all_c2w[idx][None]

        # batch = {
        #     'index': torch.tensor([idx]),
        #     'c2w': c2w,
        #     'light_positions': c2w[..., :3, -1],
        #     'H': self.h,
        #     'W': self.w
        # }

        self.idx += 1
        if self.idx == len(self.all_images):
            self.idx = 0
            self.image_perm = torch.randperm(len(self.all_images))
        # self.idx = (self.idx + 1) % len(self.all_images)

        return batch


@register("co3d-datamodule")
class Co3dDataModule(pl.LightningDataModule):
    def __init__(self, cfg: Optional[Union[dict, DictConfig]] = None) -> None:
        super().__init__()
        self.cfg = parse_structured(Co3dDataModuleConfig, cfg)

    def setup(self, stage=None):
        if stage in [None, "fit"]:
            self.train_dataset = Co3dIterableDataset(self.cfg, self.cfg.train_split)
        if stage in [None, "fit", "validate"]:
            self.val_dataset = Co3dDataset(self.cfg, self.cfg.val_split)
        if stage in [None, "test", "predict"]:
            self.test_dataset = Co3dDataset(self.cfg, self.cfg.test_split)

    def prepare_data(self):
        pass

    def general_loader(self, dataset, batch_size, collate_fn=None) -> DataLoader:
        sampler = None
        return DataLoader(
            dataset,
            num_workers=0,
            batch_size=batch_size,
            # pin_memory=True,
            collate_fn=collate_fn,
        )

    def train_dataloader(self):
        return self.general_loader(
            self.train_dataset, batch_size=1, collate_fn=self.train_dataset.collate
        )

    def val_dataloader(self):
        return self.general_loader(self.val_dataset, batch_size=1)

    def test_dataloader(self):
        return self.general_loader(self.test_dataset, batch_size=1)

    def predict_dataloader(self):
        return self.general_loader(self.test_dataset, batch_size=1)