Spaces:
Runtime error
Runtime error
File size: 10,660 Bytes
2fa4776 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
from dataclasses import dataclass
import nerfacc
import torch
import torch.nn.functional as F
import threestudio
from threestudio.models.background.base import BaseBackground
from threestudio.models.geometry.base import BaseImplicitGeometry
from threestudio.models.materials.base import BaseMaterial
from threestudio.models.renderers.base import VolumeRenderer
from threestudio.utils.ops import chunk_batch, validate_empty_rays
from threestudio.utils.typing import *
@threestudio.register("nerf-volume-renderer")
class NeRFVolumeRenderer(VolumeRenderer):
@dataclass
class Config(VolumeRenderer.Config):
num_samples_per_ray: int = 512
randomized: bool = True
eval_chunk_size: int = 160000
grid_prune: bool = True
prune_alpha_threshold: bool = True
return_comp_normal: bool = False
return_normal_perturb: bool = False
cfg: Config
def configure(
self,
geometry: BaseImplicitGeometry,
material: BaseMaterial,
background: BaseBackground,
) -> None:
super().configure(geometry, material, background)
self.estimator = nerfacc.OccGridEstimator(
roi_aabb=self.bbox.view(-1), resolution=32, levels=1
)
if not self.cfg.grid_prune:
self.estimator.occs.fill_(True)
self.estimator.binaries.fill_(True)
self.render_step_size = (
1.732 * 2 * self.cfg.radius / self.cfg.num_samples_per_ray
)
self.randomized = self.cfg.randomized
def forward(
self,
rays_o: Float[Tensor, "B H W 3"],
rays_d: Float[Tensor, "B H W 3"],
light_positions: Float[Tensor, "B 3"],
bg_color: Optional[Tensor] = None,
**kwargs
) -> Dict[str, Float[Tensor, "..."]]:
batch_size, height, width = rays_o.shape[:3]
rays_o_flatten: Float[Tensor, "Nr 3"] = rays_o.reshape(-1, 3)
rays_d_flatten: Float[Tensor, "Nr 3"] = rays_d.reshape(-1, 3)
light_positions_flatten: Float[Tensor, "Nr 3"] = (
light_positions.reshape(-1, 1, 1, 3)
.expand(-1, height, width, -1)
.reshape(-1, 3)
)
n_rays = rays_o_flatten.shape[0]
def sigma_fn(t_starts, t_ends, ray_indices):
t_starts, t_ends = t_starts[..., None], t_ends[..., None]
t_origins = rays_o_flatten[ray_indices]
t_positions = (t_starts + t_ends) / 2.0
t_dirs = rays_d_flatten[ray_indices]
positions = t_origins + t_dirs * t_positions
if self.training:
sigma = self.geometry.forward_density(positions)[..., 0]
else:
sigma = chunk_batch(
self.geometry.forward_density,
self.cfg.eval_chunk_size,
positions,
)[..., 0]
return sigma
if not self.cfg.grid_prune:
with torch.no_grad():
ray_indices, t_starts_, t_ends_ = self.estimator.sampling(
rays_o_flatten,
rays_d_flatten,
sigma_fn=None,
render_step_size=self.render_step_size,
alpha_thre=0.0,
stratified=self.randomized,
cone_angle=0.0,
early_stop_eps=0,
)
else:
with torch.no_grad():
ray_indices, t_starts_, t_ends_ = self.estimator.sampling(
rays_o_flatten,
rays_d_flatten,
sigma_fn=sigma_fn if self.cfg.prune_alpha_threshold else None,
render_step_size=self.render_step_size,
alpha_thre=0.01 if self.cfg.prune_alpha_threshold else 0.0,
stratified=self.randomized,
cone_angle=0.0,
)
ray_indices, t_starts_, t_ends_ = validate_empty_rays(
ray_indices, t_starts_, t_ends_
)
ray_indices = ray_indices.long()
t_starts, t_ends = t_starts_[..., None], t_ends_[..., None]
t_origins = rays_o_flatten[ray_indices]
t_dirs = rays_d_flatten[ray_indices]
t_light_positions = light_positions_flatten[ray_indices]
t_positions = (t_starts + t_ends) / 2.0
positions = t_origins + t_dirs * t_positions
t_intervals = t_ends - t_starts
if self.training:
geo_out = self.geometry(
positions, output_normal=self.material.requires_normal
)
rgb_fg_all = self.material(
viewdirs=t_dirs,
positions=positions,
light_positions=t_light_positions,
**geo_out,
**kwargs
)
comp_rgb_bg = self.background(dirs=rays_d)
else:
geo_out = chunk_batch(
self.geometry,
self.cfg.eval_chunk_size,
positions,
output_normal=self.material.requires_normal,
)
rgb_fg_all = chunk_batch(
self.material,
self.cfg.eval_chunk_size,
viewdirs=t_dirs,
positions=positions,
light_positions=t_light_positions,
**geo_out
)
comp_rgb_bg = chunk_batch(
self.background, self.cfg.eval_chunk_size, dirs=rays_d
)
weights: Float[Tensor, "Nr 1"]
weights_, _, _ = nerfacc.render_weight_from_density(
t_starts[..., 0],
t_ends[..., 0],
geo_out["density"][..., 0],
ray_indices=ray_indices,
n_rays=n_rays,
)
weights = weights_[..., None]
opacity: Float[Tensor, "Nr 1"] = nerfacc.accumulate_along_rays(
weights[..., 0], values=None, ray_indices=ray_indices, n_rays=n_rays
)
depth: Float[Tensor, "Nr 1"] = nerfacc.accumulate_along_rays(
weights[..., 0], values=t_positions, ray_indices=ray_indices, n_rays=n_rays
)
comp_rgb_fg: Float[Tensor, "Nr Nc"] = nerfacc.accumulate_along_rays(
weights[..., 0], values=rgb_fg_all, ray_indices=ray_indices, n_rays=n_rays
)
# populate depth and opacity to each point
t_depth = depth[ray_indices]
z_variance = nerfacc.accumulate_along_rays(
weights[..., 0],
values=(t_positions - t_depth) ** 2,
ray_indices=ray_indices,
n_rays=n_rays,
)
if bg_color is None:
bg_color = comp_rgb_bg
else:
if bg_color.shape[:-1] == (batch_size,):
# e.g. constant random color used for Zero123
# [bs,3] -> [bs, 1, 1, 3]):
bg_color = bg_color.unsqueeze(1).unsqueeze(1)
# -> [bs, height, width, 3]):
bg_color = bg_color.expand(-1, height, width, -1)
if bg_color.shape[:-1] == (batch_size, height, width):
bg_color = bg_color.reshape(batch_size * height * width, -1)
comp_rgb = comp_rgb_fg + bg_color * (1.0 - opacity)
out = {
"comp_rgb": comp_rgb.view(batch_size, height, width, -1),
"comp_rgb_fg": comp_rgb_fg.view(batch_size, height, width, -1),
"comp_rgb_bg": comp_rgb_bg.view(batch_size, height, width, -1),
"opacity": opacity.view(batch_size, height, width, 1),
"depth": depth.view(batch_size, height, width, 1),
"z_variance": z_variance.view(batch_size, height, width, 1),
}
if self.training:
out.update(
{
"weights": weights,
"t_points": t_positions,
"t_intervals": t_intervals,
"t_dirs": t_dirs,
"ray_indices": ray_indices,
"points": positions,
**geo_out,
}
)
if "normal" in geo_out:
if self.cfg.return_comp_normal:
comp_normal: Float[Tensor, "Nr 3"] = nerfacc.accumulate_along_rays(
weights[..., 0],
values=geo_out["normal"],
ray_indices=ray_indices,
n_rays=n_rays,
)
comp_normal = F.normalize(comp_normal, dim=-1)
comp_normal = (
(comp_normal + 1.0) / 2.0 * opacity
) # for visualization
out.update(
{
"comp_normal": comp_normal.view(
batch_size, height, width, 3
),
}
)
if self.cfg.return_normal_perturb:
normal_perturb = self.geometry(
positions + torch.randn_like(positions) * 1e-2,
output_normal=self.material.requires_normal,
)["normal"]
out.update({"normal_perturb": normal_perturb})
else:
if "normal" in geo_out:
comp_normal = nerfacc.accumulate_along_rays(
weights[..., 0],
values=geo_out["normal"],
ray_indices=ray_indices,
n_rays=n_rays,
)
comp_normal = F.normalize(comp_normal, dim=-1)
comp_normal = (comp_normal + 1.0) / 2.0 * opacity # for visualization
out.update(
{
"comp_normal": comp_normal.view(batch_size, height, width, 3),
}
)
return out
def update_step(
self, epoch: int, global_step: int, on_load_weights: bool = False
) -> None:
if self.cfg.grid_prune:
def occ_eval_fn(x):
density = self.geometry.forward_density(x)
# approximate for 1 - torch.exp(-density * self.render_step_size) based on taylor series
return density * self.render_step_size
if self.training and not on_load_weights:
self.estimator.update_every_n_steps(
step=global_step, occ_eval_fn=occ_eval_fn
)
def train(self, mode=True):
self.randomized = mode and self.cfg.randomized
return super().train(mode=mode)
def eval(self):
self.randomized = False
return super().eval()
|