Spaces:
Runtime error
Runtime error
File size: 26,040 Bytes
2fa4776 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 |
import bisect
import math
import random
from dataclasses import dataclass, field
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset, IterableDataset
import threestudio
from threestudio import register
from threestudio.utils.base import Updateable
from threestudio.utils.config import parse_structured
from threestudio.utils.misc import get_device
from threestudio.utils.ops import (
get_mvp_matrix,
get_projection_matrix,
get_ray_directions,
get_rays,
)
from threestudio.utils.typing import *
import os
import numpy as np
def safe_normalize(x, eps=1e-20):
return x / torch.sqrt(torch.clamp(torch.sum(x * x, -1, keepdim=True), min=eps))
def convert_camera_to_world_transform(transform):
# 将右手坐标系的变换矩阵转换为左手坐标系
# 复制原始变换矩阵
converted_transform = transform.clone()
# 反转观察方向(将平移分量的第三个元素乘以-1)
converted_transform[:, 2] *= -1
# 交换第一行和第三行
converted_transform[[0, 2], :] = converted_transform[[2, 0], :]
return converted_transform
def circle_poses(device, radius=torch.tensor([3.2]), theta=torch.tensor([60]), phi=torch.tensor([0])):
theta = theta / 180 * np.pi
phi = phi / 180 * np.pi
centers = torch.stack([
radius * torch.sin(theta) * torch.sin(phi),
radius * torch.cos(theta),
radius * torch.sin(theta) * torch.cos(phi),
], dim=-1) # [B, 3]
# lookat
forward_vector = safe_normalize(centers)
up_vector = torch.FloatTensor([0, 1, 0]).to(device).unsqueeze(0).repeat(len(centers), 1)
right_vector = safe_normalize(torch.cross(forward_vector, up_vector, dim=-1))
up_vector = safe_normalize(torch.cross(right_vector, forward_vector, dim=-1))
poses = torch.eye(4, dtype=torch.float, device=device).unsqueeze(0).repeat(len(centers), 1, 1)
poses[:, :3, :3] = torch.stack((right_vector, up_vector, forward_vector), dim=-1)
poses[:, :3, 3] = centers
return poses
trans_t = lambda t : torch.Tensor([
[1,0,0,0],
[0,1,0,0],
[0,0,1,t],
[0,0,0,1]]).float()
rot_phi = lambda phi : torch.Tensor([
[1,0,0,0],
[0,np.cos(phi),-np.sin(phi),0],
[0,np.sin(phi), np.cos(phi),0],
[0,0,0,1]]).float()
rot_theta = lambda th : torch.Tensor([
[np.cos(th),0,-np.sin(th),0],
[0,1,0,0],
[np.sin(th),0, np.cos(th),0],
[0,0,0,1]]).float()
def rodrigues_mat_to_rot(R):
eps =1e-16
trc = np.trace(R)
trc2 = (trc - 1.)/ 2.
#sinacostrc2 = np.sqrt(1 - trc2 * trc2)
s = np.array([R[2, 1] - R[1, 2], R[0, 2] - R[2, 0], R[1, 0] - R[0, 1]])
if (1 - trc2 * trc2) >= eps:
tHeta = np.arccos(trc2)
tHetaf = tHeta / (2 * (np.sin(tHeta)))
else:
tHeta = np.real(np.arccos(trc2))
tHetaf = 0.5 / (1 - tHeta / 6)
omega = tHetaf * s
return omega
def rodrigues_rot_to_mat(r):
wx,wy,wz = r
theta = np.sqrt(wx * wx + wy * wy + wz * wz)
a = np.cos(theta)
b = (1 - np.cos(theta)) / (theta*theta)
c = np.sin(theta) / theta
R = np.zeros([3,3])
R[0, 0] = a + b * (wx * wx)
R[0, 1] = b * wx * wy - c * wz
R[0, 2] = b * wx * wz + c * wy
R[1, 0] = b * wx * wy + c * wz
R[1, 1] = a + b * (wy * wy)
R[1, 2] = b * wy * wz - c * wx
R[2, 0] = b * wx * wz - c * wy
R[2, 1] = b * wz * wy + c * wx
R[2, 2] = a + b * (wz * wz)
return R
def pose_spherical(theta, phi, radius):
c2w = trans_t(radius)
c2w = rot_phi(phi/180.*np.pi) @ c2w
c2w = rot_theta(theta/180.*np.pi) @ c2w
c2w = torch.Tensor(np.array([[-1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]])) @ c2w
return c2w
def convert_camera_pose(camera_pose):
# Clone the tensor to avoid in-place operations
colmap_pose = camera_pose.clone()
# Extract rotation and translation components
rotation = colmap_pose[:, :3, :3]
translation = colmap_pose[:, :3, 3]
# Change rotation orientation
rotation[:, 0, :] *= -1
rotation[:, 1, :] *= -1
# Change translation position
translation[:, 0] *= -1
translation[:, 1] *= -1
return colmap_pose
def convert_camera_pose(camera_pose):
# Clone the tensor to avoid in-place operations
colmap_pose = camera_pose.clone()
# Extract rotation and translation components
rotation = colmap_pose[:, :3, :3]
translation = colmap_pose[:, :3, 3]
# Change rotation orientation
rotation[:, 0, :] *= -1
rotation[:, 1, :] *= -1
# Change translation position
translation[:, 0] *= -1
translation[:, 1] *= -1
return colmap_pose
@dataclass
class RandomCameraDataModuleConfig:
# height, width, and batch_size should be Union[int, List[int]]
# but OmegaConf does not support Union of containers
height: Any = 512
width: Any = 512
batch_size: Any = 1
resolution_milestones: List[int] = field(default_factory=lambda: [])
eval_height: int = 512
eval_width: int = 512
eval_batch_size: int = 1
n_val_views: int = 1
n_test_views: int = 120
elevation_range: Tuple[float, float] = (-10, 60)
azimuth_range: Tuple[float, float] = (-180, 180)
camera_distance_range: Tuple[float, float] = (4.,6.)
fovy_range: Tuple[float, float] = (
40,
70,
) # in degrees, in vertical direction (along height)
camera_perturb: float = 0.
center_perturb: float = 0.
up_perturb: float = 0.0
light_position_perturb: float = 1.0
light_distance_range: Tuple[float, float] = (0.8, 1.5)
eval_elevation_deg: float = 15.0
eval_camera_distance: float = 6.
eval_fovy_deg: float = 70.0
light_sample_strategy: str = "dreamfusion"
batch_uniform_azimuth: bool = True
progressive_until: int = 0 # progressive ranges for elevation, azimuth, r, fovy
class RandomCameraIterableDataset(IterableDataset, Updateable):
def __init__(self, cfg: Any) -> None:
super().__init__()
self.cfg: RandomCameraDataModuleConfig = cfg
self.heights: List[int] = (
[self.cfg.height] if isinstance(self.cfg.height, int) else self.cfg.height
)
self.widths: List[int] = (
[self.cfg.width] if isinstance(self.cfg.width, int) else self.cfg.width
)
self.batch_sizes: List[int] = (
[self.cfg.batch_size]
if isinstance(self.cfg.batch_size, int)
else self.cfg.batch_size
)
assert len(self.heights) == len(self.widths) == len(self.batch_sizes)
self.resolution_milestones: List[int]
if (
len(self.heights) == 1
and len(self.widths) == 1
and len(self.batch_sizes) == 1
):
if len(self.cfg.resolution_milestones) > 0:
threestudio.warn(
"Ignoring resolution_milestones since height and width are not changing"
)
self.resolution_milestones = [-1]
else:
assert len(self.heights) == len(self.cfg.resolution_milestones) + 1
self.resolution_milestones = [-1] + self.cfg.resolution_milestones
self.directions_unit_focals = [
get_ray_directions(H=height, W=width, focal=1.0)
for (height, width) in zip(self.heights, self.widths)
]
self.height: int = self.heights[0]
self.width: int = self.widths[0]
self.batch_size: int = self.batch_sizes[0]
self.directions_unit_focal = self.directions_unit_focals[0]
self.elevation_range = self.cfg.elevation_range
self.azimuth_range = self.cfg.azimuth_range
self.camera_distance_range = self.cfg.camera_distance_range
self.fovy_range = self.cfg.fovy_range
def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False):
size_ind = bisect.bisect_right(self.resolution_milestones, global_step) - 1
self.height = self.heights[size_ind]
self.width = self.widths[size_ind]
self.batch_size = self.batch_sizes[size_ind]
self.directions_unit_focal = self.directions_unit_focals[size_ind]
threestudio.debug(
f"Training height: {self.height}, width: {self.width}, batch_size: {self.batch_size}"
)
# progressive view
self.progressive_view(global_step)
def __iter__(self):
while True:
yield {}
def progressive_view(self, global_step):
pass
# r = min(1.0, global_step / (self.cfg.progressive_until + 1))
# self.elevation_range = [
# (1 - r) * self.cfg.eval_elevation_deg + r * self.cfg.elevation_range[0],
# (1 - r) * self.cfg.eval_elevation_deg + r * self.cfg.elevation_range[1],
# ]
# self.azimuth_range = [
# (1 - r) * 0.0 + r * self.cfg.azimuth_range[0],
# (1 - r) * 0.0 + r * self.cfg.azimuth_range[1],
# ]
# self.camera_distance_range = [
# (1 - r) * self.cfg.eval_camera_distance
# + r * self.cfg.camera_distance_range[0],
# (1 - r) * self.cfg.eval_camera_distance
# + r * self.cfg.camera_distance_range[1],
# ]
# self.fovy_range = [
# (1 - r) * self.cfg.eval_fovy_deg + r * self.cfg.fovy_range[0],
# (1 - r) * self.cfg.eval_fovy_deg + r * self.cfg.fovy_range[1],
# ]
def collate(self, batch) -> Dict[str, Any]:
# sample elevation angles
elevation_deg: Float[Tensor, "B"]
elevation: Float[Tensor, "B"]
if random.random() < 0.5:
# sample elevation angles uniformly with a probability 0.5 (biased towards poles)
elevation_deg = (
torch.rand(self.batch_size)
* (self.elevation_range[1] - self.elevation_range[0])
+ self.elevation_range[0]
)
elevation = elevation_deg * math.pi / 180
else:
# otherwise sample uniformly on sphere
elevation_range_percent = [
(self.elevation_range[0] + 90.0) / 180.0,
(self.elevation_range[1] + 90.0) / 180.0,
]
# inverse transform sampling
elevation = torch.asin(
2
* (
torch.rand(self.batch_size)
* (elevation_range_percent[1] - elevation_range_percent[0])
+ elevation_range_percent[0]
)
- 1.0
)
elevation_deg = elevation / math.pi * 180.0
# sample azimuth angles from a uniform distribution bounded by azimuth_range
azimuth_deg: Float[Tensor, "B"]
if self.cfg.batch_uniform_azimuth:
# ensures sampled azimuth angles in a batch cover the whole range
azimuth_deg = (
torch.rand(self.batch_size) + torch.arange(self.batch_size)
) / self.batch_size * (
self.azimuth_range[1] - self.azimuth_range[0]
) + self.azimuth_range[
0
]
else:
# simple random sampling
azimuth_deg = (
torch.rand(self.batch_size)
* (self.azimuth_range[1] - self.azimuth_range[0])
+ self.azimuth_range[0]
)
azimuth = azimuth_deg * math.pi / 180
# sample distances from a uniform distribution bounded by distance_range
camera_distances: Float[Tensor, "B"] = (
torch.rand(self.batch_size)
* (self.camera_distance_range[1] - self.camera_distance_range[0])
+ self.camera_distance_range[0]
)
# convert spherical coordinates to cartesian coordinates
# right hand coordinate system, x back, y right, z up
# elevation in (-90, 90), azimuth from +x to +y in (-180, 180)
camera_positions: Float[Tensor, "B 3"] = torch.stack(
[
camera_distances * torch.cos(elevation) * torch.cos(azimuth),
camera_distances * torch.cos(elevation) * torch.sin(azimuth),
camera_distances * torch.sin(elevation),
],
dim=-1,
)
# default scene center at origin
center: Float[Tensor, "B 3"] = torch.zeros_like(camera_positions)
# default camera up direction as +z
up: Float[Tensor, "B 3"] = torch.as_tensor([0, 0, 1], dtype=torch.float32)[
None, :
].repeat(self.batch_size, 1)
# sample camera perturbations from a uniform distribution [-camera_perturb, camera_perturb]
camera_perturb: Float[Tensor, "B 3"] = (
torch.rand(self.batch_size, 3) * 2 * self.cfg.camera_perturb
- self.cfg.camera_perturb
)
camera_positions = camera_positions + camera_perturb
# sample center perturbations from a normal distribution with mean 0 and std center_perturb
center_perturb: Float[Tensor, "B 3"] = (
torch.randn(self.batch_size, 3) * self.cfg.center_perturb
)
center = center + center_perturb
# sample up perturbations from a normal distribution with mean 0 and std up_perturb
up_perturb: Float[Tensor, "B 3"] = (
torch.randn(self.batch_size, 3) * self.cfg.up_perturb
)
up = up + up_perturb
# sample fovs from a uniform distribution bounded by fov_range
fovy_deg: Float[Tensor, "B"] = (
torch.rand(self.batch_size) * (self.fovy_range[1] - self.fovy_range[0])
+ self.fovy_range[0]
)
fovy = fovy_deg * math.pi / 180
# sample light distance from a uniform distribution bounded by light_distance_range
light_distances: Float[Tensor, "B"] = (
torch.rand(self.batch_size)
* (self.cfg.light_distance_range[1] - self.cfg.light_distance_range[0])
+ self.cfg.light_distance_range[0]
)
if self.cfg.light_sample_strategy == "dreamfusion" or self.cfg.light_sample_strategy == "dreamfusion3dgs":
# sample light direction from a normal distribution with mean camera_position and std light_position_perturb
light_direction: Float[Tensor, "B 3"] = F.normalize(
camera_positions
+ torch.randn(self.batch_size, 3) * self.cfg.light_position_perturb,
dim=-1,
)
# get light position by scaling light direction by light distance
light_positions: Float[Tensor, "B 3"] = (
light_direction * light_distances[:, None]
)
elif self.cfg.light_sample_strategy == "magic3d":
# sample light direction within restricted angle range (pi/3)
local_z = F.normalize(camera_positions, dim=-1)
local_x = F.normalize(
torch.stack(
[local_z[:, 1], -local_z[:, 0], torch.zeros_like(local_z[:, 0])],
dim=-1,
),
dim=-1,
)
local_y = F.normalize(torch.cross(local_z, local_x, dim=-1), dim=-1)
rot = torch.stack([local_x, local_y, local_z], dim=-1)
light_azimuth = (
torch.rand(self.batch_size) * math.pi * 2 - math.pi
) # [-pi, pi]
light_elevation = (
torch.rand(self.batch_size) * math.pi / 3 + math.pi / 6
) # [pi/6, pi/2]
light_positions_local = torch.stack(
[
light_distances
* torch.cos(light_elevation)
* torch.cos(light_azimuth),
light_distances
* torch.cos(light_elevation)
* torch.sin(light_azimuth),
light_distances * torch.sin(light_elevation),
],
dim=-1,
)
light_positions = (rot @ light_positions_local[:, :, None])[:, :, 0]
else:
raise ValueError(
f"Unknown light sample strategy: {self.cfg.light_sample_strategy}"
)
lookat: Float[Tensor, "B 3"] = F.normalize(center - camera_positions, dim=-1)
right: Float[Tensor, "B 3"] = F.normalize(torch.cross(lookat, up), dim=-1)
up = F.normalize(torch.cross(right, lookat), dim=-1)
c2w3x4: Float[Tensor, "B 3 4"] = torch.cat(
[torch.stack([right, up, -lookat], dim=-1), camera_positions[:, :, None]],
dim=-1,
)
c2w: Float[Tensor, "B 4 4"] = torch.cat(
[c2w3x4, torch.zeros_like(c2w3x4[:, :1])], dim=1
)
c2w[:, 3, 3] = 1.0
# get directions by dividing directions_unit_focal by focal length
focal_length: Float[Tensor, "B"] = 0.5 * self.height / torch.tan(0.5 * fovy)
directions: Float[Tensor, "B H W 3"] = self.directions_unit_focal[
None, :, :, :
].repeat(self.batch_size, 1, 1, 1)
directions[:, :, :, :2] = (
directions[:, :, :, :2] / focal_length[:, None, None, None]
)
proj_mtx: Float[Tensor, "B 4 4"] = get_projection_matrix(
fovy, self.width / self.height, 0.1, 1000.0
) # FIXME: hard-coded near and far
mvp_mtx: Float[Tensor, "B 4 4"] = get_mvp_matrix(c2w, proj_mtx)
c2w_3dgs = []
for id in range(self.batch_size):
render_pose = pose_spherical( azimuth_deg[id] + 180.0, -elevation_deg[id], camera_distances[id])
# print(azimuth_deg[id] , -elevation_deg[id], camera_distances[id]*2.0)
# print(render_pose)
matrix = torch.linalg.inv(render_pose)
# R = -np.transpose(matrix[:3,:3])
# R = -np.transpose(matrix[:3,:3])
R = -torch.transpose(matrix[:3,:3], 0, 1)
R[:,0] = -R[:,0]
T = -matrix[:3, 3]
c2w_single = torch.cat([R, T[:,None]], 1)
c2w_single = torch.cat([c2w_single, torch.tensor([[0,0,0,1]])], 0)
# c2w_single = convert_camera_to_world_transform(c2w_single)
c2w_3dgs.append(c2w_single)
c2w_3dgs = torch.stack(c2w_3dgs, 0)
return {
"mvp_mtx": mvp_mtx,
"camera_positions": camera_positions,
"c2w": c2w,
"c2w_3dgs":c2w_3dgs,
"light_positions": light_positions,
"elevation": elevation_deg,
"azimuth": azimuth_deg,
"camera_distances": camera_distances,
"height": self.height,
"width": self.width,
"fovy":fovy,
}
class RandomCameraDataset(Dataset):
def __init__(self, cfg: Any, split: str) -> None:
super().__init__()
self.cfg: RandomCameraDataModuleConfig = cfg
self.split = split
if split == "val":
self.n_views = self.cfg.n_val_views
else:
self.n_views = self.cfg.n_test_views
azimuth_deg: Float[Tensor, "B"]
if self.split == "val":
# make sure the first and last view are not the same
azimuth_deg = torch.linspace(-180., 180.0, self.n_views + 1)[: self.n_views]
else:
azimuth_deg = torch.linspace(-180., 180.0, self.n_views)
elevation_deg: Float[Tensor, "B"] = torch.full_like(
azimuth_deg, self.cfg.eval_elevation_deg
)
camera_distances: Float[Tensor, "B"] = torch.full_like(
elevation_deg, self.cfg.eval_camera_distance
)
elevation = elevation_deg * math.pi / 180
azimuth = azimuth_deg * math.pi / 180
# convert spherical coordinates to cartesian coordinates
# right hand coordinate system, x back, y right, z up
# elevation in (-90, 90), azimuth from +x to +y in (-180, 180)
camera_positions: Float[Tensor, "B 3"] = torch.stack(
[
camera_distances * torch.cos(elevation) * torch.cos(azimuth),
camera_distances * torch.cos(elevation) * torch.sin(azimuth),
camera_distances * torch.sin(elevation),
],
dim=-1,
)
# default scene center at origin
center: Float[Tensor, "B 3"] = torch.zeros_like(camera_positions)
# default camera up direction as +z
up: Float[Tensor, "B 3"] = torch.as_tensor([0, 0, 1], dtype=torch.float32)[
None, :
].repeat(self.cfg.eval_batch_size, 1)
fovy_deg: Float[Tensor, "B"] = torch.full_like(
elevation_deg, self.cfg.eval_fovy_deg
)
fovy = fovy_deg * math.pi / 180
light_positions: Float[Tensor, "B 3"] = camera_positions
lookat: Float[Tensor, "B 3"] = F.normalize(center - camera_positions, dim=-1)
right: Float[Tensor, "B 3"] = F.normalize(torch.cross(lookat, up), dim=-1)
up = F.normalize(torch.cross(right, lookat), dim=-1)
c2w3x4: Float[Tensor, "B 3 4"] = torch.cat(
[torch.stack([right, up, -lookat], dim=-1), camera_positions[:, :, None]],
dim=-1,
)
c2w: Float[Tensor, "B 4 4"] = torch.cat(
[c2w3x4, torch.zeros_like(c2w3x4[:, :1])], dim=1
)
c2w[:, 3, 3] = 1.0
# get directions by dividing directions_unit_focal by focal length
focal_length: Float[Tensor, "B"] = (
0.5 * self.cfg.eval_height / torch.tan(0.5 * fovy)
)
directions_unit_focal = get_ray_directions(
H=self.cfg.eval_height, W=self.cfg.eval_width, focal=1.0
)
directions: Float[Tensor, "B H W 3"] = directions_unit_focal[
None, :, :, :
].repeat(self.n_views, 1, 1, 1)
directions[:, :, :, :2] = (
directions[:, :, :, :2] / focal_length[:, None, None, None]
)
proj_mtx: Float[Tensor, "B 4 4"] = get_projection_matrix(
fovy, self.cfg.eval_width / self.cfg.eval_height, 0.1, 1000.0
) # FIXME: hard-coded near and far
mvp_mtx: Float[Tensor, "B 4 4"] = get_mvp_matrix(c2w, proj_mtx)
c2w_3dgs = []
for id in range(self.n_views):
render_pose = pose_spherical( azimuth_deg[id] + 180.0, -elevation_deg[id], camera_distances[id])
matrix = torch.linalg.inv(render_pose)
# R = -np.transpose(matrix[:3,:3])
# R = -np.transpose(matrix[:3,:3])
R = -torch.transpose(matrix[:3,:3], 0, 1)
R[:,0] = -R[:,0]
T = -matrix[:3, 3]
c2w_single = torch.cat([R, T[:,None]], 1)
c2w_single = torch.cat([c2w_single, torch.tensor([[0,0,0,1]])], 0)
# c2w_single = convert_camera_to_world_transform(c2w_single)
c2w_3dgs.append(c2w_single)
c2w_3dgs = torch.stack(c2w_3dgs, 0)
self.mvp_mtx = mvp_mtx
self.c2w = c2w
self.c2w_3dgs = c2w_3dgs
self.camera_positions = camera_positions
self.light_positions = light_positions
self.elevation, self.azimuth = elevation, azimuth
self.elevation_deg, self.azimuth_deg = elevation_deg, azimuth_deg
self.camera_distances = camera_distances
self.fovy = fovy
def __len__(self):
return self.n_views
def __getitem__(self, index):
return {
"index": index,
"mvp_mtx": self.mvp_mtx[index],
"c2w": self.c2w[index],
"c2w_3dgs": self.c2w_3dgs[index],
"camera_positions": self.camera_positions[index],
"light_positions": self.light_positions[index],
"elevation": self.elevation_deg[index],
"azimuth": self.azimuth_deg[index],
"camera_distances": self.camera_distances[index],
"height": self.cfg.eval_height,
"width": self.cfg.eval_width,
"fovy":self.fovy[index],
}
def collate(self, batch):
batch = torch.utils.data.default_collate(batch)
batch.update({"height": self.cfg.eval_height, "width": self.cfg.eval_width})
return batch
@register("random-camera-datamodule")
class RandomCameraDataModule(pl.LightningDataModule):
cfg: RandomCameraDataModuleConfig
def __init__(self, cfg: Optional[Union[dict, DictConfig]] = None) -> None:
super().__init__()
self.cfg = parse_structured(RandomCameraDataModuleConfig, cfg)
def setup(self, stage=None) -> None:
if stage in [None, "fit"]:
self.train_dataset = RandomCameraIterableDataset(self.cfg)
if stage in [None, "fit", "validate"]:
self.val_dataset = RandomCameraDataset(self.cfg, "val")
if stage in [None, "test", "predict"]:
self.test_dataset = RandomCameraDataset(self.cfg, "test")
def prepare_data(self):
pass
def general_loader(self, dataset, batch_size, collate_fn=None) -> DataLoader:
return DataLoader(
dataset,
# very important to disable multi-processing if you want to change self attributes at runtime!
# (for example setting self.width and self.height in update_step)
num_workers=0, # type: ignore
batch_size=batch_size,
collate_fn=collate_fn,
)
def train_dataloader(self) -> DataLoader:
return self.general_loader(
self.train_dataset, batch_size=None, collate_fn=self.train_dataset.collate
)
def val_dataloader(self) -> DataLoader:
return self.general_loader(
self.val_dataset, batch_size=1, collate_fn=self.val_dataset.collate
)
# return self.general_loader(self.train_dataset, batch_size=None, collate_fn=self.train_dataset.collate)
def test_dataloader(self) -> DataLoader:
return self.general_loader(
self.test_dataset, batch_size=1, collate_fn=self.test_dataset.collate
)
def predict_dataloader(self) -> DataLoader:
return self.general_loader(
self.test_dataset, batch_size=1, collate_fn=self.test_dataset.collate
)
|