Spaces:
Runtime error
Runtime error
File size: 12,694 Bytes
2fa4776 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import bisect
import math
import os
from dataclasses import dataclass, field
import cv2
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset, IterableDataset
import threestudio
from threestudio import register
from threestudio.data.uncond import (
RandomCameraDataModuleConfig,
RandomCameraDataset,
RandomCameraIterableDataset,
)
from threestudio.utils.base import Updateable
from threestudio.utils.config import parse_structured
from threestudio.utils.misc import get_rank
from threestudio.utils.ops import (
get_mvp_matrix,
get_projection_matrix,
get_ray_directions,
get_rays,
)
from threestudio.utils.typing import *
@dataclass
class SingleImageDataModuleConfig:
# height and width should be Union[int, List[int]]
# but OmegaConf does not support Union of containers
height: Any = 96
width: Any = 96
resolution_milestones: List[int] = field(default_factory=lambda: [])
default_elevation_deg: float = 0.0
default_azimuth_deg: float = -180.0
default_camera_distance: float = 1.2
default_fovy_deg: float = 60.0
image_path: str = ""
use_random_camera: bool = True
random_camera: dict = field(default_factory=dict)
rays_noise_scale: float = 2e-3
batch_size: int = 1
requires_depth: bool = False
requires_normal: bool = False
class SingleImageDataBase:
def setup(self, cfg, split):
self.split = split
self.rank = get_rank()
self.cfg: SingleImageDataModuleConfig = cfg
if self.cfg.use_random_camera:
random_camera_cfg = parse_structured(
RandomCameraDataModuleConfig, self.cfg.get("random_camera", {})
)
if split == "train":
self.random_pose_generator = RandomCameraIterableDataset(
random_camera_cfg
)
else:
self.random_pose_generator = RandomCameraDataset(
random_camera_cfg, split
)
elevation_deg = torch.FloatTensor([self.cfg.default_elevation_deg])
azimuth_deg = torch.FloatTensor([self.cfg.default_azimuth_deg])
camera_distance = torch.FloatTensor([self.cfg.default_camera_distance])
elevation = elevation_deg * math.pi / 180
azimuth = azimuth_deg * math.pi / 180
camera_position: Float[Tensor, "1 3"] = torch.stack(
[
camera_distance * torch.cos(elevation) * torch.cos(azimuth),
camera_distance * torch.cos(elevation) * torch.sin(azimuth),
camera_distance * torch.sin(elevation),
],
dim=-1,
)
center: Float[Tensor, "1 3"] = torch.zeros_like(camera_position)
up: Float[Tensor, "1 3"] = torch.as_tensor([0, 0, 1], dtype=torch.float32)[None]
light_position: Float[Tensor, "1 3"] = camera_position
lookat: Float[Tensor, "1 3"] = F.normalize(center - camera_position, dim=-1)
right: Float[Tensor, "1 3"] = F.normalize(torch.cross(lookat, up), dim=-1)
up = F.normalize(torch.cross(right, lookat), dim=-1)
self.c2w: Float[Tensor, "1 3 4"] = torch.cat(
[torch.stack([right, up, -lookat], dim=-1), camera_position[:, :, None]],
dim=-1,
)
self.camera_position = camera_position
self.light_position = light_position
self.elevation_deg, self.azimuth_deg = elevation_deg, azimuth_deg
self.camera_distance = camera_distance
self.fovy = torch.deg2rad(torch.FloatTensor([self.cfg.default_fovy_deg]))
self.heights: List[int] = (
[self.cfg.height] if isinstance(self.cfg.height, int) else self.cfg.height
)
self.widths: List[int] = (
[self.cfg.width] if isinstance(self.cfg.width, int) else self.cfg.width
)
assert len(self.heights) == len(self.widths)
self.resolution_milestones: List[int]
if len(self.heights) == 1 and len(self.widths) == 1:
if len(self.cfg.resolution_milestones) > 0:
threestudio.warn(
"Ignoring resolution_milestones since height and width are not changing"
)
self.resolution_milestones = [-1]
else:
assert len(self.heights) == len(self.cfg.resolution_milestones) + 1
self.resolution_milestones = [-1] + self.cfg.resolution_milestones
self.directions_unit_focals = [
get_ray_directions(H=height, W=width, focal=1.0)
for (height, width) in zip(self.heights, self.widths)
]
self.focal_lengths = [
0.5 * height / torch.tan(0.5 * self.fovy) for height in self.heights
]
self.height: int = self.heights[0]
self.width: int = self.widths[0]
self.directions_unit_focal = self.directions_unit_focals[0]
self.focal_length = self.focal_lengths[0]
self.set_rays()
self.load_images()
self.prev_height = self.height
def set_rays(self):
# get directions by dividing directions_unit_focal by focal length
directions: Float[Tensor, "1 H W 3"] = self.directions_unit_focal[None]
directions[:, :, :, :2] = directions[:, :, :, :2] / self.focal_length
rays_o, rays_d = get_rays(
directions, self.c2w, keepdim=True, noise_scale=self.cfg.rays_noise_scale
)
proj_mtx: Float[Tensor, "4 4"] = get_projection_matrix(
self.fovy, self.width / self.height, 0.1, 100.0
) # FIXME: hard-coded near and far
mvp_mtx: Float[Tensor, "4 4"] = get_mvp_matrix(self.c2w, proj_mtx)
self.rays_o, self.rays_d = rays_o, rays_d
self.mvp_mtx = mvp_mtx
def load_images(self):
# load image
assert os.path.exists(
self.cfg.image_path
), f"Could not find image {self.cfg.image_path}!"
rgba = cv2.cvtColor(
cv2.imread(self.cfg.image_path, cv2.IMREAD_UNCHANGED), cv2.COLOR_BGRA2RGBA
)
rgba = (
cv2.resize(
rgba, (self.width, self.height), interpolation=cv2.INTER_AREA
).astype(np.float32)
/ 255.0
)
rgb = rgba[..., :3]
self.rgb: Float[Tensor, "1 H W 3"] = (
torch.from_numpy(rgb).unsqueeze(0).contiguous().to(self.rank)
)
self.mask: Float[Tensor, "1 H W 1"] = (
torch.from_numpy(rgba[..., 3:] > 0.5).unsqueeze(0).to(self.rank)
)
print(
f"[INFO] single image dataset: load image {self.cfg.image_path} {self.rgb.shape}"
)
# load depth
if self.cfg.requires_depth:
depth_path = self.cfg.image_path.replace("_rgba.png", "_depth.png")
assert os.path.exists(depth_path)
depth = cv2.imread(depth_path, cv2.IMREAD_UNCHANGED)
depth = cv2.resize(
depth, (self.width, self.height), interpolation=cv2.INTER_AREA
)
self.depth: Float[Tensor, "1 H W 1"] = (
torch.from_numpy(depth.astype(np.float32) / 255.0)
.unsqueeze(0)
.to(self.rank)
)
print(
f"[INFO] single image dataset: load depth {depth_path} {self.depth.shape}"
)
else:
self.depth = None
# load normal
if self.cfg.requires_normal:
normal_path = self.cfg.image_path.replace("_rgba.png", "_normal.png")
assert os.path.exists(normal_path)
normal = cv2.imread(normal_path, cv2.IMREAD_UNCHANGED)
normal = cv2.resize(
normal, (self.width, self.height), interpolation=cv2.INTER_AREA
)
self.normal: Float[Tensor, "1 H W 3"] = (
torch.from_numpy(normal.astype(np.float32) / 255.0)
.unsqueeze(0)
.to(self.rank)
)
print(
f"[INFO] single image dataset: load normal {normal_path} {self.normal.shape}"
)
else:
self.normal = None
def get_all_images(self):
return self.rgb
def update_step_(self, epoch: int, global_step: int, on_load_weights: bool = False):
size_ind = bisect.bisect_right(self.resolution_milestones, global_step) - 1
self.height = self.heights[size_ind]
if self.height == self.prev_height:
return
self.prev_height = self.height
self.width = self.widths[size_ind]
self.directions_unit_focal = self.directions_unit_focals[size_ind]
self.focal_length = self.focal_lengths[size_ind]
threestudio.debug(f"Training height: {self.height}, width: {self.width}")
self.set_rays()
self.load_images()
class SingleImageIterableDataset(IterableDataset, SingleImageDataBase, Updateable):
def __init__(self, cfg: Any, split: str) -> None:
super().__init__()
self.setup(cfg, split)
def collate(self, batch) -> Dict[str, Any]:
batch = {
"rays_o": self.rays_o,
"rays_d": self.rays_d,
"mvp_mtx": self.mvp_mtx,
"camera_positions": self.camera_position,
"light_positions": self.light_position,
"elevation": self.elevation_deg,
"azimuth": self.azimuth_deg,
"camera_distances": self.camera_distance,
"rgb": self.rgb,
"ref_depth": self.depth,
"ref_normal": self.normal,
"mask": self.mask,
"height": self.cfg.height,
"width": self.cfg.width,
}
import pdb; pdb.set_trace()
if self.cfg.use_random_camera:
batch["random_camera"] = self.random_pose_generator.collate(None)
return batch
def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False):
self.update_step_(epoch, global_step, on_load_weights)
self.random_pose_generator.update_step(epoch, global_step, on_load_weights)
def __iter__(self):
while True:
yield {}
class SingleImageDataset(Dataset, SingleImageDataBase):
def __init__(self, cfg: Any, split: str) -> None:
super().__init__()
self.setup(cfg, split)
def __len__(self):
return len(self.random_pose_generator)
def __getitem__(self, index):
return self.random_pose_generator[index]
# if index == 0:
# return {
# 'rays_o': self.rays_o[0],
# 'rays_d': self.rays_d[0],
# 'mvp_mtx': self.mvp_mtx[0],
# 'camera_positions': self.camera_position[0],
# 'light_positions': self.light_position[0],
# 'elevation': self.elevation_deg[0],
# 'azimuth': self.azimuth_deg[0],
# 'camera_distances': self.camera_distance[0],
# 'rgb': self.rgb[0],
# 'depth': self.depth[0],
# 'mask': self.mask[0]
# }
# else:
# return self.random_pose_generator[index - 1]
@register("single-image-datamodule")
class SingleImageDataModule(pl.LightningDataModule):
cfg: SingleImageDataModuleConfig
def __init__(self, cfg: Optional[Union[dict, DictConfig]] = None) -> None:
super().__init__()
self.cfg = parse_structured(SingleImageDataModuleConfig, cfg)
def setup(self, stage=None) -> None:
if stage in [None, "fit"]:
self.train_dataset = SingleImageIterableDataset(self.cfg, "train")
if stage in [None, "fit", "validate"]:
self.val_dataset = SingleImageDataset(self.cfg, "val")
if stage in [None, "test", "predict"]:
self.test_dataset = SingleImageDataset(self.cfg, "test")
def prepare_data(self):
pass
def general_loader(self, dataset, batch_size, collate_fn=None) -> DataLoader:
return DataLoader(
dataset, num_workers=0, batch_size=batch_size, collate_fn=collate_fn
)
def train_dataloader(self) -> DataLoader:
return self.general_loader(
self.train_dataset,
batch_size=self.cfg.batch_size,
collate_fn=self.train_dataset.collate,
)
def val_dataloader(self) -> DataLoader:
return self.general_loader(self.val_dataset, batch_size=1)
def test_dataloader(self) -> DataLoader:
return self.general_loader(self.test_dataset, batch_size=1)
def predict_dataloader(self) -> DataLoader:
return self.general_loader(self.test_dataset, batch_size=1)
|