import random import cv2 import numpy as np from albumentations import DualTransform, ImageOnlyTransform from albumentations.augmentations.crops.functional import crop #from albumentations.augmentations.functional import crop def isotropically_resize_image(img, size, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC): h, w = img.shape[:2] if max(w, h) == size: return img if w > h: scale = size / w h = h * scale w = size else: scale = size / h w = w * scale h = size interpolation = interpolation_up if scale > 1 else interpolation_down resized = cv2.resize(img, (int(w), int(h)), interpolation=interpolation) return resized class IsotropicResize(DualTransform): def __init__(self, max_side, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC, always_apply=False, p=1): super(IsotropicResize, self).__init__(always_apply, p) self.max_side = max_side self.interpolation_down = interpolation_down self.interpolation_up = interpolation_up def apply(self, img, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC, **params): return isotropically_resize_image(img, size=self.max_side, interpolation_down=interpolation_down, interpolation_up=interpolation_up) def apply_to_mask(self, img, **params): return self.apply(img, interpolation_down=cv2.INTER_NEAREST, interpolation_up=cv2.INTER_NEAREST, **params) def get_transform_init_args_names(self): return ("max_side", "interpolation_down", "interpolation_up") class Resize4xAndBack(ImageOnlyTransform): def __init__(self, always_apply=False, p=0.5): super(Resize4xAndBack, self).__init__(always_apply, p) def apply(self, img, **params): h, w = img.shape[:2] scale = random.choice([2, 4]) img = cv2.resize(img, (w // scale, h // scale), interpolation=cv2.INTER_AREA) img = cv2.resize(img, (w, h), interpolation=random.choice([cv2.INTER_CUBIC, cv2.INTER_LINEAR, cv2.INTER_NEAREST])) return img class RandomSizedCropNonEmptyMaskIfExists(DualTransform): def __init__(self, min_max_height, w2h_ratio=[0.7, 1.3], always_apply=False, p=0.5): super(RandomSizedCropNonEmptyMaskIfExists, self).__init__(always_apply, p) self.min_max_height = min_max_height self.w2h_ratio = w2h_ratio def apply(self, img, x_min=0, x_max=0, y_min=0, y_max=0, **params): cropped = crop(img, x_min, y_min, x_max, y_max) return cropped @property def targets_as_params(self): return ["mask"] def get_params_dependent_on_targets(self, params): mask = params["mask"] mask_height, mask_width = mask.shape[:2] crop_height = int(mask_height * random.uniform(self.min_max_height[0], self.min_max_height[1])) w2h_ratio = random.uniform(*self.w2h_ratio) crop_width = min(int(crop_height * w2h_ratio), mask_width - 1) if mask.sum() == 0: x_min = random.randint(0, mask_width - crop_width + 1) y_min = random.randint(0, mask_height - crop_height + 1) else: mask = mask.sum(axis=-1) if mask.ndim == 3 else mask non_zero_yx = np.argwhere(mask) y, x = random.choice(non_zero_yx) x_min = x - random.randint(0, crop_width - 1) y_min = y - random.randint(0, crop_height - 1) x_min = np.clip(x_min, 0, mask_width - crop_width) y_min = np.clip(y_min, 0, mask_height - crop_height) x_max = x_min + crop_height y_max = y_min + crop_width y_max = min(mask_height, y_max) x_max = min(mask_width, x_max) return {"x_min": x_min, "x_max": x_max, "y_min": y_min, "y_max": y_max} def get_transform_init_args_names(self): return "min_max_height", "height", "width", "w2h_ratio"