|
import os |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
from albumentations.augmentations.functional import image_compression |
|
from facenet_pytorch.models.mtcnn import MTCNN |
|
from concurrent.futures import ThreadPoolExecutor |
|
|
|
from torchvision.transforms import Normalize |
|
|
|
mean = [0.485, 0.456, 0.406] |
|
std = [0.229, 0.224, 0.225] |
|
normalize_transform = Normalize(mean, std) |
|
|
|
|
|
class VideoReader: |
|
"""Helper class for reading one or more frames from a video file.""" |
|
|
|
def __init__(self, verbose=True, insets=(0, 0)): |
|
"""Creates a new VideoReader. |
|
|
|
Arguments: |
|
verbose: whether to print warnings and error messages |
|
insets: amount to inset the image by, as a percentage of |
|
(width, height). This lets you "zoom in" to an image |
|
to remove unimportant content around the borders. |
|
Useful for face detection, which may not work if the |
|
faces are too small. |
|
""" |
|
self.verbose = verbose |
|
self.insets = insets |
|
|
|
def read_frames(self, path, num_frames, jitter=0, seed=None): |
|
"""Reads frames that are always evenly spaced throughout the video. |
|
|
|
Arguments: |
|
path: the video file |
|
num_frames: how many frames to read, -1 means the entire video |
|
(warning: this will take up a lot of memory!) |
|
jitter: if not 0, adds small random offsets to the frame indices; |
|
this is useful so we don't always land on even or odd frames |
|
seed: random seed for jittering; if you set this to a fixed value, |
|
you probably want to set it only on the first video |
|
""" |
|
assert num_frames > 0 |
|
|
|
capture = cv2.VideoCapture(path) |
|
frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
if frame_count <= 0: return None |
|
|
|
frame_idxs = np.linspace(0, frame_count - 1, num_frames, endpoint=True, dtype=np.int32) |
|
if jitter > 0: |
|
np.random.seed(seed) |
|
jitter_offsets = np.random.randint(-jitter, jitter, len(frame_idxs)) |
|
frame_idxs = np.clip(frame_idxs + jitter_offsets, 0, frame_count - 1) |
|
|
|
result = self._read_frames_at_indices(path, capture, frame_idxs) |
|
capture.release() |
|
return result |
|
|
|
def read_random_frames(self, path, num_frames, seed=None): |
|
"""Picks the frame indices at random. |
|
|
|
Arguments: |
|
path: the video file |
|
num_frames: how many frames to read, -1 means the entire video |
|
(warning: this will take up a lot of memory!) |
|
""" |
|
assert num_frames > 0 |
|
np.random.seed(seed) |
|
|
|
capture = cv2.VideoCapture(path) |
|
frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
if frame_count <= 0: return None |
|
|
|
frame_idxs = sorted(np.random.choice(np.arange(0, frame_count), num_frames)) |
|
result = self._read_frames_at_indices(path, capture, frame_idxs) |
|
|
|
capture.release() |
|
return result |
|
|
|
def read_frames_at_indices(self, path, frame_idxs): |
|
"""Reads frames from a video and puts them into a NumPy array. |
|
|
|
Arguments: |
|
path: the video file |
|
frame_idxs: a list of frame indices. Important: should be |
|
sorted from low-to-high! If an index appears multiple |
|
times, the frame is still read only once. |
|
|
|
Returns: |
|
- a NumPy array of shape (num_frames, height, width, 3) |
|
- a list of the frame indices that were read |
|
|
|
Reading stops if loading a frame fails, in which case the first |
|
dimension returned may actually be less than num_frames. |
|
|
|
Returns None if an exception is thrown for any reason, or if no |
|
frames were read. |
|
""" |
|
assert len(frame_idxs) > 0 |
|
capture = cv2.VideoCapture(path) |
|
result = self._read_frames_at_indices(path, capture, frame_idxs) |
|
capture.release() |
|
return result |
|
|
|
def _read_frames_at_indices(self, path, capture, frame_idxs): |
|
try: |
|
frames = [] |
|
idxs_read = [] |
|
for frame_idx in range(frame_idxs[0], frame_idxs[-1] + 1): |
|
|
|
ret = capture.grab() |
|
if not ret: |
|
if self.verbose: |
|
print("Error grabbing frame %d from movie %s" % (frame_idx, path)) |
|
break |
|
|
|
|
|
current = len(idxs_read) |
|
if frame_idx == frame_idxs[current]: |
|
ret, frame = capture.retrieve() |
|
if not ret or frame is None: |
|
if self.verbose: |
|
print("Error retrieving frame %d from movie %s" % (frame_idx, path)) |
|
break |
|
|
|
frame = self._postprocess_frame(frame) |
|
frames.append(frame) |
|
idxs_read.append(frame_idx) |
|
|
|
if len(frames) > 0: |
|
return np.stack(frames), idxs_read |
|
if self.verbose: |
|
print("No frames read from movie %s" % path) |
|
return None |
|
except: |
|
if self.verbose: |
|
print("Exception while reading movie %s" % path) |
|
return None |
|
|
|
def read_middle_frame(self, path): |
|
"""Reads the frame from the middle of the video.""" |
|
capture = cv2.VideoCapture(path) |
|
frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
result = self._read_frame_at_index(path, capture, frame_count // 2) |
|
capture.release() |
|
return result |
|
|
|
def read_frame_at_index(self, path, frame_idx): |
|
"""Reads a single frame from a video. |
|
|
|
If you just want to read a single frame from the video, this is more |
|
efficient than scanning through the video to find the frame. However, |
|
for reading multiple frames it's not efficient. |
|
|
|
My guess is that a "streaming" approach is more efficient than a |
|
"random access" approach because, unless you happen to grab a keyframe, |
|
the decoder still needs to read all the previous frames in order to |
|
reconstruct the one you're asking for. |
|
|
|
Returns a NumPy array of shape (1, H, W, 3) and the index of the frame, |
|
or None if reading failed. |
|
""" |
|
capture = cv2.VideoCapture(path) |
|
result = self._read_frame_at_index(path, capture, frame_idx) |
|
capture.release() |
|
return result |
|
|
|
def _read_frame_at_index(self, path, capture, frame_idx): |
|
capture.set(cv2.CAP_PROP_POS_FRAMES, frame_idx) |
|
ret, frame = capture.read() |
|
if not ret or frame is None: |
|
if self.verbose: |
|
print("Error retrieving frame %d from movie %s" % (frame_idx, path)) |
|
return None |
|
else: |
|
frame = self._postprocess_frame(frame) |
|
return np.expand_dims(frame, axis=0), [frame_idx] |
|
|
|
def _postprocess_frame(self, frame): |
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
|
|
if self.insets[0] > 0: |
|
W = frame.shape[1] |
|
p = int(W * self.insets[0]) |
|
frame = frame[:, p:-p, :] |
|
|
|
if self.insets[1] > 0: |
|
H = frame.shape[1] |
|
q = int(H * self.insets[1]) |
|
frame = frame[q:-q, :, :] |
|
|
|
return frame |
|
|
|
|
|
class FaceExtractor: |
|
def __init__(self, video_read_fn): |
|
self.video_read_fn = video_read_fn |
|
self.detector = MTCNN(margin=0, thresholds=[0.7, 0.8, 0.8], device="cuda") |
|
|
|
def process_videos(self, input_dir, filenames, video_idxs): |
|
videos_read = [] |
|
frames_read = [] |
|
frames = [] |
|
results = [] |
|
for video_idx in video_idxs: |
|
|
|
filename = filenames[video_idx] |
|
video_path = os.path.join(input_dir, filename) |
|
result = self.video_read_fn(video_path) |
|
|
|
if result is None: continue |
|
|
|
videos_read.append(video_idx) |
|
|
|
|
|
my_frames, my_idxs = result |
|
|
|
frames.append(my_frames) |
|
frames_read.append(my_idxs) |
|
for i, frame in enumerate(my_frames): |
|
h, w = frame.shape[:2] |
|
img = Image.fromarray(frame.astype(np.uint8)) |
|
img = img.resize(size=[s // 2 for s in img.size]) |
|
|
|
batch_boxes, probs = self.detector.detect(img, landmarks=False) |
|
|
|
faces = [] |
|
scores = [] |
|
if batch_boxes is None: |
|
continue |
|
for bbox, score in zip(batch_boxes, probs): |
|
if bbox is not None: |
|
xmin, ymin, xmax, ymax = [int(b * 2) for b in bbox] |
|
w = xmax - xmin |
|
h = ymax - ymin |
|
p_h = h // 3 |
|
p_w = w // 3 |
|
crop = frame[max(ymin - p_h, 0):ymax + p_h, max(xmin - p_w, 0):xmax + p_w] |
|
faces.append(crop) |
|
scores.append(score) |
|
|
|
frame_dict = {"video_idx": video_idx, |
|
"frame_idx": my_idxs[i], |
|
"frame_w": w, |
|
"frame_h": h, |
|
"faces": faces, |
|
"scores": scores} |
|
results.append(frame_dict) |
|
|
|
return results |
|
|
|
def process_video(self, video_path): |
|
"""Convenience method for doing face extraction on a single video.""" |
|
input_dir = os.path.dirname(video_path) |
|
filenames = [os.path.basename(video_path)] |
|
return self.process_videos(input_dir, filenames, [0]) |
|
|
|
|
|
|
|
def confident_strategy(pred, t=0.8): |
|
pred = np.array(pred) |
|
sz = len(pred) |
|
fakes = np.count_nonzero(pred > t) |
|
|
|
if fakes > sz // 2.5 and fakes > 11: |
|
return np.mean(pred[pred > t]) |
|
elif np.count_nonzero(pred < 0.2) > 0.9 * sz: |
|
return np.mean(pred[pred < 0.2]) |
|
else: |
|
return np.mean(pred) |
|
|
|
strategy = confident_strategy |
|
|
|
|
|
def put_to_center(img, input_size): |
|
img = img[:input_size, :input_size] |
|
image = np.zeros((input_size, input_size, 3), dtype=np.uint8) |
|
start_w = (input_size - img.shape[1]) // 2 |
|
start_h = (input_size - img.shape[0]) // 2 |
|
image[start_h:start_h + img.shape[0], start_w: start_w + img.shape[1], :] = img |
|
return image |
|
|
|
|
|
def isotropically_resize_image(img, size, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC): |
|
h, w = img.shape[:2] |
|
if max(w, h) == size: |
|
return img |
|
if w > h: |
|
scale = size / w |
|
h = h * scale |
|
w = size |
|
else: |
|
scale = size / h |
|
w = w * scale |
|
h = size |
|
interpolation = interpolation_up if scale > 1 else interpolation_down |
|
resized = cv2.resize(img, (int(w), int(h)), interpolation=interpolation) |
|
return resized |
|
|
|
|
|
def predict_on_video(face_extractor, video_path, batch_size, input_size, models, strategy=np.mean, |
|
apply_compression=False, device='cpu'): |
|
batch_size *= 4 |
|
try: |
|
faces = face_extractor.process_video(video_path) |
|
if len(faces) > 0: |
|
x = np.zeros((batch_size, input_size, input_size, 3), dtype=np.uint8) |
|
n = 0 |
|
for frame_data in faces: |
|
for face in frame_data["faces"]: |
|
resized_face = isotropically_resize_image(face, input_size) |
|
resized_face = put_to_center(resized_face, input_size) |
|
if apply_compression: |
|
resized_face = image_compression(resized_face, quality=90, image_type=".jpg") |
|
if n + 1 < batch_size: |
|
x[n] = resized_face |
|
n += 1 |
|
else: |
|
pass |
|
if n > 0: |
|
if device == 'cpu': |
|
x = torch.tensor(x, device='cpu').float() |
|
else: |
|
x = torch.tensor(x, device="cuda").float() |
|
|
|
x = x.permute((0, 3, 1, 2)) |
|
for i in range(len(x)): |
|
x[i] = normalize_transform(x[i] / 255.) |
|
|
|
with torch.no_grad(): |
|
preds = [] |
|
for model in models: |
|
if device == 'cpu': |
|
y_pred = model(x[:n]) |
|
else: |
|
y_pred = model(x[:n].half()) |
|
y_pred = torch.sigmoid(y_pred.squeeze()) |
|
bpred = y_pred[:n].cpu().numpy() |
|
preds.append(strategy(bpred)) |
|
return np.mean(preds) |
|
except Exception as e: |
|
print("Prediction error on video %s: %s" % (video_path, str(e))) |
|
|
|
return 0.5 |
|
|
|
|
|
def predict_on_video_set(face_extractor, videos, input_size, num_workers, test_dir, frames_per_video, models, |
|
strategy=np.mean, |
|
apply_compression=False): |
|
def process_file(i): |
|
filename = videos[i] |
|
y_pred = predict_on_video(face_extractor=face_extractor, video_path=os.path.join(test_dir, filename), |
|
input_size=input_size, |
|
batch_size=frames_per_video, |
|
models=models, strategy=strategy, apply_compression=apply_compression) |
|
return y_pred |
|
|
|
with ThreadPoolExecutor(max_workers=num_workers) as ex: |
|
predictions = ex.map(process_file, range(len(videos))) |
|
return list(predictions) |
|
|
|
|