Spaces:
Sleeping
Sleeping
from transformers import WhisperTokenizer | |
import os | |
tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-small") #, language="marathi", task="transcribe" | |
from transformers import pipeline | |
import gradio as gr | |
import torch | |
pipe = pipeline(model="thak123/gom-stt-v3", #"thak123/whisper-small-LDC-V1", #"thak123/whisper-small-gom", | |
task="automatic-speech-recognition", tokenizer= tokenizer) # change to "your-username/the-name-you-picked" | |
# pipe.model.config.forced_decoder_ids = ( | |
# pipe.tokenizer.get_decoder_prompt_ids( | |
# language="marathi", task="transcribe" | |
# ) | |
# ) | |
def transcribe(audio): | |
text = pipe(audio)["text"] | |
pipe(audio) | |
return pipe(audio) #text | |
iface = gr.Interface( | |
fn=transcribe, | |
inputs=[gr.Audio(sources=["microphone", "upload"])], | |
outputs="text", | |
examples=[ | |
[os.path.join(os.path.dirname("."),"audio/chalyaami.mp3")], | |
[os.path.join(os.path.dirname("."),"audio/ekdonteen.flac")], | |
[os.path.join(os.path.dirname("."),"audio/heyatachadjaale.mp3")], | |
], | |
title="Whisper Konkani", | |
description="Realtime demo for Konkani speech recognition using a fine-tuned Whisper small model.", | |
) | |
iface.launch() |