Spaces:
Sleeping
Sleeping
import numpy as np | |
import os | |
import gradio as gr | |
import xgboost as xgb | |
import pickle | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
os.environ["WANDB_DISABLED"] = "true" | |
label2id = { | |
0: "negative", | |
1: "neutral", | |
2: "positive" | |
} | |
# names of the files saved in step 2: Training | |
model_file_name = "xgb_reg_dg.pkl" | |
vectorizer_file_name = 'vectorizer_dg.pk' | |
# load | |
xgb_model_loaded = pickle.load(open(model_file_name, "rb")) | |
vectorizer_loaded = pickle.load(open(vectorizer_file_name, "rb")) | |
def predict_sentiment(predict_texts): | |
predictions_loaded = xgb_model_loaded.predict(vectorizer_loaded.transform([predict_texts])) | |
print(predictions_loaded) | |
return label2id[predictions_loaded[0]] | |
interface = gr.Interface( | |
fn=predict_sentiment, | |
inputs='text', | |
outputs=['text'], | |
title='Croatian Book reviews Sentiment Analysis', | |
examples= ["Volim kavu","Ne volim kavu"], | |
description='Get the positive/neutral/negative sentiment for the given input.' | |
) | |
interface.launch(inline = False) |