from huggingface_hub import HfApi, ModelFilter from transformers import AutoTokenizer, AutoModelForMaskedLM import pandas as pd import re from tqdm import tqdm import torch import gradio as gr import warnings warnings.filterwarnings('ignore') MODEL, MODEL_NAME, BATCH_CONVERTER, ALPHABET = None, None, None, None OFFSET = 1 MODELS = [m.modelId for m in HfApi().list_models(filter=ModelFilter(author="facebook", model_name="esm", task="fill-mask"), sort="lastModified", direction=-1)] SCORING = ["masked-marginals (more accurate)", "wt-marginals (faster)"] def label_row(row, sequence, token_probs): wt, idx, mt = row[0], int(row[1:-1]) - OFFSET, row[-1] assert sequence[idx] == wt, "The listed wildtype does not match the provided sequence" wt_encoded, mt_encoded = ALPHABET[wt], ALPHABET[mt] score = token_probs[0, 1 + idx, mt_encoded] - token_probs[0, 1 + idx, wt_encoded] return score.item() def initialise_model(model_name): global MODEL, MODEL_NAME, BATCH_CONVERTER, ALPHABET MODEL_NAME = model_name MODEL = AutoModelForMaskedLM.from_pretrained(model_name) BATCH_CONVERTER = AutoTokenizer.from_pretrained(model_name) ALPHABET = BATCH_CONVERTER.get_vocab() if torch.cuda.is_available(): MODEL = MODEL.cuda() def parse_input(seq, sub): assert seq.isalpha(), "Sequence must be alphabetic" substitutions, mode = list(), None if len(sub.split()) == 1 and len(sub.split()[0]) == len(seq): mode = 'seq vs seq' for resi,(src,trg) in enumerate(zip(seq,sub), OFFSET): if src != trg: substitutions.append(f"{src}{resi}{trg}") elif len(targets := sub.split()) > 1: if all(re.match(r'\d+', x) for x in targets): mode = 'deep mutational scan' for resi in map(int, sub.split()): src = seq[resi-OFFSET] for trg in "ACDEFGHIKLMNPQRSTVWY".replace(src,''): substitutions.append(f"{src}{resi}{trg}") elif all(re.match(r'[A-Z]\d+[A-Z]', x) for x in targets): mode = 'aa substitutions' substitutions = targets if not mode: raise RuntimeError("Unrecognised running mode") return mode, pd.DataFrame(substitutions, columns=['0']) def run_model(sequence, substitutions, batch_tokens, scoring_strategy): if scoring_strategy.startswith("wt-marginals"): with torch.no_grad(): token_probs = torch.log_softmax(MODEL(batch_tokens)["logits"], dim=-1) substitutions[MODEL_NAME] = substitutions.apply( lambda row: label_row( row['0'], sequence, token_probs, ), axis=1, ) elif scoring_strategy.startswith("masked-marginals"): all_token_probs = [] for i in tqdm(range(batch_tokens.size()[1])): batch_tokens_masked = batch_tokens.clone() batch_tokens_masked[0, i] = ALPHABET[''] with torch.no_grad(): token_probs = torch.log_softmax( MODEL(batch_tokens_masked)["logits"], dim=-1 ) all_token_probs.append(token_probs[:, i]) token_probs = torch.cat(all_token_probs, dim=0).unsqueeze(0) substitutions[MODEL_NAME] = substitutions.apply( lambda row: label_row( row['0'], sequence, token_probs, ), axis=1, ) return substitutions def parse_output(output, mode): if mode == 'aa substitutions': output = output.sort_values(MODEL_NAME, ascending=False) elif mode == 'deep mutational scan': output = pd.concat([(output.assign(resi=output['0'].str.extract(r'(\d+)', expand=False).astype(int)) .sort_values(['resi', MODEL_NAME], ascending=[True,False]) .groupby(['resi']) .head(19) .drop(['resi'], axis=1)).iloc[19*x:19*(x+1)].reset_index(drop=True) for x in range(output.shape[0]//19)] , axis=1).set_axis(range(output.shape[0]//19*2), axis='columns') return output.style.format(lambda x: f'{x:.2f}' if isinstance(x, float) else x).hide_index().hide_columns().background_gradient(cmap="RdYlGn", vmax=8, vmin=-8).to_html() # mode = 'deep mutational scan' #@param ['seq vs seq', 'deep mutational scan', 'aa substitutions'] # sequence = "MVEQYLLEAIVRDARDGITISDCSRPDNPLVFVNDAFTRMTGYDAEEVIGKNCRFLQRGDINLSAVHTIKIAMLTHEPCLVTLKNYRKDGTIFWNELSLTPIINKNGLITHYLGIQKDVSAQVILNQTLHEENHLLKSNKEMLEYLVNIDALTGLHNRRFLEDQLVIQWKLASRHINTITIFMIDIDYFKAFNDTYGHTAGDEALRTIAKTLNNCFMRGSDFVARYGGEEFTILAIGMTELQAHEYSTKLVQKIENLNIHHKGSPLGHLTISLGYSQANPQYHNDQNLVIEQADRALYSAKVEGKNRAVAYREQ" #@param {type:"string"} # target = "61 214 19 30 122 140" #@param {type:"string"} # substitutions = list() # scoring_strategy = "masked-marginals" # if mode == 'seq vs seq': # for resi,(seq,trg) in enumerate(zip(sequence,target), OFFSET): # if seq != trg: # substitutions.append(f"{seq}{resi}{trg}") # elif mode == 'deep mutational scan': # for resi in map(int, target.split()): # seq = sequence[resi-OFFSET] # for trg in "ACDEFGHIKLMNPQRSTVWY".replace(seq,''): # substitutions.append(f"{seq}{resi}{trg}") # elif mode == 'aa substitutions': # substitutions = target.split() # else: # raise RuntimeError("Unrecognised running mode") # df = pd.DataFrame(substitutions, columns=['0']) # mutation_col = df.columns[0] # batch_tokens = batch_converter(sequence, return_tensors='pt')['input_ids'] # if scoring_strategy == "wt-marginals": # with torch.no_grad(): # token_probs = torch.log_softmax(model(batch_tokens)["logits"], dim=-1) # df[model_name] = df.apply( # lambda row: label_row( # row[mutation_col], # sequence, # token_probs, # alphabet, # OFFSET, # ), # axis=1, # ) # elif scoring_strategy == "masked-marginals": # all_token_probs = [] # for i in tqdm(range(batch_tokens.size()[1])): # batch_tokens_masked = batch_tokens.clone() # batch_tokens_masked[0, i] = alphabet[''] # with torch.no_grad(): # token_probs = torch.log_softmax( # model(batch_tokens_masked)["logits"], dim=-1 # ) # all_token_probs.append(token_probs[:, i]) # vocab size # token_probs = torch.cat(all_token_probs, dim=0).unsqueeze(0) # df[model_name] = df.apply( # lambda row: label_row( # row[mutation_col], # sequence, # token_probs, # alphabet, # OFFSET, # ), # axis=1, # ) # if mode == 'aa substitutions': # df = df.sort_values(model_name, ascending=False) # elif mode == 'deep mutational scan': # df = pd.concat([(df.assign(resi=df['0'].str.extract(f'(\d+)', expand=False).astype(int)) # .sort_values(['resi', model_name], ascending=[True,False]) # .groupby(['resi']) # .head(19) # .drop(['resi'], axis=1)).iloc[19*x:19*(x+1)].reset_index(drop=True) for x in range(df.shape[0]//19)] # , axis=1).set_axis(range(df.shape[0]//19*2), axis='columns') # df.style.hide_index().hide_columns().background_gradient(cmap="RdYlGn", vmax=8, vmin=-8) def app(*argv): seq, trg, model_name, scoring_strategy, *_ = argv mode, substitutions = parse_input(seq, trg) if model_name != MODEL_NAME: initialise_model(model_name) batch_tokens = BATCH_CONVERTER(seq, return_tensors='pt')['input_ids'] df = run_model(seq, substitutions, batch_tokens, scoring_strategy) return parse_output(df, mode) # demo = gr.Interface( # theme=gr.themes.Base(), # title="Protein Sequence Mutagenesis", # description="Predict the effect of mutations on protein stability", # fn=app, # inputs=[gr.Textbox(lines=2, label="Sequence", placeholder="Sequence here...", required=True, value='MVEQYLLEAIVRDARDGITISDCSRPDNPLVFVNDAFTRMTGYDAEEVIGKNCRFLQRGDINLSAVHTIKIAMLTHEPCLVTLKNYRKDGTIFWNELSLTPIINKNGLITHYLGIQKDVSAQVILNQTLHEENHLLKSNKEMLEYLVNIDALTGLHNRRFLEDQLVIQWKLASRHINTITIFMIDIDYFKAFNDTYGHTAGDEALRTIAKTLNNCFMRGSDFVARYGGEEFTILAIGMTELQAHEYSTKLVQKIENLNIHHKGSPLGHLTISLGYSQANPQYHNDQNLVIEQADRALYSAKVEGKNRAVAYREQ'), # gr.Textbox(lines=2, label="Substitutions", placeholder="Substitutions here...", required=True, value="61 214 19 30 122 140"), # gr.Dropdown(MODELS, label="Model", value=MODELS[1]), # gr.Dropdown(["masked-marginals (more accurate)", "wt-marginals (faster)"], label="Scoring strategy", value="wt-marginals (faster)"), # ], # outputs=gr.HTML(formatter="html", label="Output"), # ) with gr.Blocks() as demo: gr.Markdown("""Protein Sequence Mutagenesis""", name="title") gr.Markdown("""Predict the effect of mutations on protein stability""", name="description") seq = gr.Textbox(lines=2, label="Sequence", placeholder="Sequence here...", required=True, value='MVEQYLLEAIVRDARDGITISDCSRPDNPLVFVNDAFTRMTGYDAEEVIGKNCRFLQRGDINLSAVHTIKIAMLTHEPCLVTLKNYRKDGTIFWNELSLTPIINKNGLITHYLGIQKDVSAQVILNQTLHEENHLLKSNKEMLEYLVNIDALTGLHNRRFLEDQLVIQWKLASRHINTITIFMIDIDYFKAFNDTYGHTAGDEALRTIAKTLNNCFMRGSDFVARYGGEEFTILAIGMTELQAHEYSTKLVQKIENLNIHHKGSPLGHLTISLGYSQANPQYHNDQNLVIEQADRALYSAKVEGKNRAVAYREQ') trg = gr.Textbox(lines=1, label="Substitutions", placeholder="Substitutions here...", required=True, value="61 214 19 30 122 140") model_name = gr.Dropdown(MODELS, label="Model", value=MODELS[1]) scoring_strategy = gr.Dropdown(SCORING, label="Scoring strategy", value=SCORING[1]) btn = gr.Button(label="Submit", type="submit") btn.click(fn=app, inputs=[seq, trg, model_name, scoring_strategy], outputs=[gr.HTML()]) if __name__ == '__main__': demo.launch() # demo.launch(share=True, server_name="0.0.0.0", server_port=7878)