Spaces:
Sleeping
Sleeping
MassimoGregorioTotaro
commited on
Commit
•
b212cb1
1
Parent(s):
462a012
fix ok, reformatting
Browse files
app.py
CHANGED
@@ -1,167 +1,14 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import HfApi, ModelFilter
|
3 |
-
import pandas as pd
|
4 |
-
from re import match
|
5 |
from tempfile import NamedTemporaryFile
|
6 |
-
import torch
|
7 |
-
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
8 |
-
|
9 |
-
# fetch suitable ESM models from HuggingFace Hub
|
10 |
-
MODELS = [m.modelId for m in HfApi().list_models(filter=ModelFilter(author="facebook", model_name="esm", task="fill-mask"), sort="lastModified", direction=-1)]
|
11 |
-
if not any(MODELS):
|
12 |
-
raise RuntimeError("Error while retrieving models from HuggingFace Hub")
|
13 |
|
14 |
# scoring strategies
|
15 |
SCORING = ["masked-marginals (more accurate)", "wt-marginals (faster)"]
|
16 |
|
17 |
-
class Model:
|
18 |
-
"""Wrapper for ESM models"""
|
19 |
-
def __init__(self, model_name:str=""):
|
20 |
-
"load selected model and tokenizer"
|
21 |
-
self.model_name = model_name
|
22 |
-
if model_name:
|
23 |
-
self.model = AutoModelForMaskedLM.from_pretrained(model_name)
|
24 |
-
self.batch_converter = AutoTokenizer.from_pretrained(model_name)
|
25 |
-
self.alphabet = self.batch_converter.get_vocab()
|
26 |
-
if torch.cuda.is_available():
|
27 |
-
self.model = self.model.cuda()
|
28 |
-
|
29 |
-
def __rshift__(self, batch_tokens:torch.Tensor) -> torch.Tensor:
|
30 |
-
"run model on batch of tokens"
|
31 |
-
return self.model(batch_tokens)["logits"]
|
32 |
-
|
33 |
-
def __lshift__(self, input:str) -> torch.Tensor:
|
34 |
-
"convert input string to batch of tokens"
|
35 |
-
return self.batch_converter(input, return_tensors="pt")["input_ids"]
|
36 |
-
|
37 |
-
def __getitem__(self, key:str) -> int:
|
38 |
-
"get token ID from character"
|
39 |
-
return self.alphabet[key]
|
40 |
-
|
41 |
-
def run_model(self, data):
|
42 |
-
"run model on data"
|
43 |
-
def label_row(row, token_probs):
|
44 |
-
"label row with score"
|
45 |
-
wt, idx, mt = row[0], int(row[1:-1])-1, row[-1]
|
46 |
-
score = token_probs[0, 1+idx, self[mt]] - token_probs[0, 1+idx, self[wt]]
|
47 |
-
return score.item()
|
48 |
-
|
49 |
-
batch_tokens = self<<data.seq
|
50 |
-
|
51 |
-
# run model with selected scoring strategy (info thereof available in the original ESM paper)
|
52 |
-
if data.scoring_strategy.startswith("wt-marginals"):
|
53 |
-
with torch.no_grad():
|
54 |
-
token_probs = torch.log_softmax(self>>batch_tokens, dim=-1)
|
55 |
-
data.out[self.model_name] = data.sub.apply(
|
56 |
-
lambda row: label_row(
|
57 |
-
row['0'],
|
58 |
-
token_probs,
|
59 |
-
),
|
60 |
-
axis=1,
|
61 |
-
)
|
62 |
-
elif data.scoring_strategy.startswith("masked-marginals"):
|
63 |
-
all_token_probs = []
|
64 |
-
for i in range(batch_tokens.size()[1]):
|
65 |
-
batch_tokens_masked = batch_tokens.clone()
|
66 |
-
batch_tokens_masked[0, i] = self['<mask>']
|
67 |
-
with torch.no_grad():
|
68 |
-
token_probs = torch.log_softmax(
|
69 |
-
self>>batch_tokens_masked, dim=-1
|
70 |
-
)
|
71 |
-
all_token_probs.append(token_probs[:, i])
|
72 |
-
token_probs = torch.cat(all_token_probs, dim=0).unsqueeze(0)
|
73 |
-
data.out[self.model_name] = data.sub.apply(
|
74 |
-
lambda row: label_row(
|
75 |
-
row['0'],
|
76 |
-
token_probs,
|
77 |
-
),
|
78 |
-
axis=1,
|
79 |
-
)
|
80 |
-
|
81 |
-
class Data:
|
82 |
-
"""Container for input and output data"""
|
83 |
-
# initialise empty model as static class member for efficiency
|
84 |
-
model = Model()
|
85 |
-
|
86 |
-
def parse_seq(self, src:str):
|
87 |
-
"parse input sequence"
|
88 |
-
self.seq = src.strip().upper()
|
89 |
-
if not all(x in self.model.alphabet for x in src):
|
90 |
-
raise RuntimeError("Unrecognised characters in sequence")
|
91 |
-
|
92 |
-
def parse_sub(self, trg:str):
|
93 |
-
"parse input substitutions"
|
94 |
-
self.mode = None
|
95 |
-
self.sub = list()
|
96 |
-
self.trg = trg.strip().upper()
|
97 |
-
|
98 |
-
# identify running mode
|
99 |
-
if len(self.trg.split()) == 1 and len(self.trg.split()[0]) == len(self.seq): # if single string of same length as sequence, seq vs seq mode
|
100 |
-
self.mode = 'SVS'
|
101 |
-
for resi,(src,trg) in enumerate(zip(self.seq, self.trg), 1):
|
102 |
-
if src != trg:
|
103 |
-
self.sub.append(f"{src}{resi}{trg}")
|
104 |
-
else:
|
105 |
-
self.trg = self.trg.split()
|
106 |
-
if all(match(r'\d+', x) for x in self.trg): # if all strings are numbers, deep mutational scanning mode
|
107 |
-
self.mode = 'DMS'
|
108 |
-
for resi in map(int, self.trg):
|
109 |
-
src = self.seq[resi-1]
|
110 |
-
for trg in "ACDEFGHIKLMNPQRSTVWY".replace(src,''):
|
111 |
-
self.sub.append(f"{src}{resi}{trg}")
|
112 |
-
elif all(match(r'[A-Z]\d+[A-Z]', x) for x in self.trg): # if all strings are of the form X#Y, single substitution mode
|
113 |
-
self.mode = 'MUT'
|
114 |
-
self.sub = self.trg
|
115 |
-
else:
|
116 |
-
raise RuntimeError("Unrecognised running mode; wrong inputs?")
|
117 |
-
|
118 |
-
self.sub = pd.DataFrame(self.sub, columns=['0'])
|
119 |
-
|
120 |
-
def __init__(self, src:str, trg:str, model_name:str, scoring_strategy:str, out_file):
|
121 |
-
"initialise data"
|
122 |
-
# if model has changed, load new model
|
123 |
-
if self.model.model_name != model_name:
|
124 |
-
self.model_name = model_name
|
125 |
-
self.model = Model(model_name)
|
126 |
-
self.parse_seq(src)
|
127 |
-
self.parse_sub(trg)
|
128 |
-
self.scoring_strategy = scoring_strategy
|
129 |
-
self.out = pd.DataFrame(self.sub, columns=['0', self.model_name])
|
130 |
-
self.out_buffer = out_file.name
|
131 |
-
|
132 |
-
def parse_output(self) -> str:
|
133 |
-
"format output data for visualisation"
|
134 |
-
if self.mode == 'MUT': # if single substitution mode, sort by score
|
135 |
-
self.out = self.out.sort_values(self.model_name, ascending=False)
|
136 |
-
elif self.mode == 'DMS': # if deep mutational scanning mode, sort by residue and score
|
137 |
-
self.out = pd.concat([(self.out.assign(resi=self.out['0'].str.extract(r'(\d+)', expand=False).astype(int)) # FIX: this doesn't work if there's jolly characters in the input sequence
|
138 |
-
.sort_values(['resi', self.model_name], ascending=[True,False])
|
139 |
-
.groupby(['resi'])
|
140 |
-
.head(19)
|
141 |
-
.drop(['resi'], axis=1)).iloc[19*x:19*(x+1)]
|
142 |
-
.reset_index(drop=True) for x in range(self.out.shape[0]//19)]
|
143 |
-
, axis=1).set_axis(range(self.out.shape[0]//19*2), axis='columns')
|
144 |
-
# save to temporary file to be downloaded
|
145 |
-
self.out.round(2).to_csv(self.out_buffer, index=False)
|
146 |
-
return (self.out.style
|
147 |
-
.format(lambda x: f'{x:.2f}' if isinstance(x, float) else x)
|
148 |
-
.hide(axis=0)
|
149 |
-
.hide(axis=1)
|
150 |
-
.background_gradient(cmap="RdYlGn", vmax=8, vmin=-8)
|
151 |
-
.to_html(justify='center'))
|
152 |
-
|
153 |
-
def calculate(self):
|
154 |
-
"run model and parse output"
|
155 |
-
self.model.run_model(self)
|
156 |
-
return self.parse_output()
|
157 |
-
|
158 |
def app(*argv):
|
159 |
-
|
160 |
-
|
161 |
-
# html = Data(seq, trg, model_name, scoring_strategy, out_file).calculate()
|
162 |
-
df = pd.DataFrame((pd.np.random.random((10, 5))-0.5)*10, columns=list('ABCDE'))
|
163 |
-
df.to_csv(out_file.name, index=False)
|
164 |
-
html = df.to_html(justify='center')
|
165 |
return html, gr.File.update(value=out_file.name, visible=True)
|
166 |
|
167 |
with gr.Blocks() as demo, NamedTemporaryFile(mode='w+', prefix='out_', suffix='.csv') as out_file, open("instructions.md", "r") as md:
|
|
|
1 |
+
from model import MODELS
|
2 |
+
from data import Data
|
3 |
import gradio as gr
|
|
|
|
|
|
|
4 |
from tempfile import NamedTemporaryFile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# scoring strategies
|
7 |
SCORING = ["masked-marginals (more accurate)", "wt-marginals (faster)"]
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
def app(*argv):
|
10 |
+
seq, trg, model_name, scoring_strategy, out_file, *_ = argv
|
11 |
+
html = Data(seq, trg, model_name, scoring_strategy, out_file).calculate()
|
|
|
|
|
|
|
|
|
12 |
return html, gr.File.update(value=out_file.name, visible=True)
|
13 |
|
14 |
with gr.Blocks() as demo, NamedTemporaryFile(mode='w+', prefix='out_', suffix='.csv') as out_file, open("instructions.md", "r") as md:
|
data.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from model import Model
|
2 |
+
import pandas as pd
|
3 |
+
from re import match
|
4 |
+
|
5 |
+
class Data:
|
6 |
+
"""Container for input and output data"""
|
7 |
+
# initialise empty model as static class member for efficiency
|
8 |
+
model = Model()
|
9 |
+
|
10 |
+
def parse_seq(self, src:str):
|
11 |
+
"parse input sequence"
|
12 |
+
self.seq = src.strip().upper()
|
13 |
+
if not all(x in self.model.alphabet for x in src):
|
14 |
+
raise RuntimeError("Unrecognised characters in sequence")
|
15 |
+
|
16 |
+
def parse_sub(self, trg:str):
|
17 |
+
"parse input substitutions"
|
18 |
+
self.mode = None
|
19 |
+
self.sub = list()
|
20 |
+
self.trg = trg.strip().upper()
|
21 |
+
|
22 |
+
# identify running mode
|
23 |
+
if len(self.trg.split()) == 1 and len(self.trg.split()[0]) == len(self.seq): # if single string of same length as sequence, seq vs seq mode
|
24 |
+
self.mode = 'SVS'
|
25 |
+
for resi,(src,trg) in enumerate(zip(self.seq, self.trg), 1):
|
26 |
+
if src != trg:
|
27 |
+
self.sub.append(f"{src}{resi}{trg}")
|
28 |
+
else:
|
29 |
+
self.trg = self.trg.split()
|
30 |
+
if all(match(r'\d+', x) for x in self.trg): # if all strings are numbers, deep mutational scanning mode
|
31 |
+
self.mode = 'DMS'
|
32 |
+
for resi in map(int, self.trg):
|
33 |
+
src = self.seq[resi-1]
|
34 |
+
for trg in "ACDEFGHIKLMNPQRSTVWY".replace(src,''):
|
35 |
+
self.sub.append(f"{src}{resi}{trg}")
|
36 |
+
elif all(match(r'[A-Z]\d+[A-Z]', x) for x in self.trg): # if all strings are of the form X#Y, single substitution mode
|
37 |
+
self.mode = 'MUT'
|
38 |
+
self.sub = self.trg
|
39 |
+
else:
|
40 |
+
raise RuntimeError("Unrecognised running mode; wrong inputs?")
|
41 |
+
|
42 |
+
self.sub = pd.DataFrame(self.sub, columns=['0'])
|
43 |
+
|
44 |
+
def __init__(self, src:str, trg:str, model_name:str, scoring_strategy:str, out_file):
|
45 |
+
"initialise data"
|
46 |
+
# if model has changed, load new model
|
47 |
+
if self.model.model_name != model_name:
|
48 |
+
self.model_name = model_name
|
49 |
+
self.model = Model(model_name)
|
50 |
+
self.parse_seq(src)
|
51 |
+
self.parse_sub(trg)
|
52 |
+
self.scoring_strategy = scoring_strategy
|
53 |
+
self.out = pd.DataFrame(self.sub, columns=['0', self.model_name])
|
54 |
+
self.out_buffer = out_file.name
|
55 |
+
|
56 |
+
def parse_output(self) -> str:
|
57 |
+
"format output data for visualisation"
|
58 |
+
if self.mode == 'MUT': # if single substitution mode, sort by score
|
59 |
+
self.out = self.out.sort_values(self.model_name, ascending=False)
|
60 |
+
elif self.mode == 'DMS': # if deep mutational scanning mode, sort by residue and score
|
61 |
+
self.out = pd.concat([(self.out.assign(resi=self.out['0'].str.extract(r'(\d+)', expand=False).astype(int)) # FIX: this doesn't work if there's jolly characters in the input sequence
|
62 |
+
.sort_values(['resi', self.model_name], ascending=[True,False])
|
63 |
+
.groupby(['resi'])
|
64 |
+
.head(19)
|
65 |
+
.drop(['resi'], axis=1)).iloc[19*x:19*(x+1)]
|
66 |
+
.reset_index(drop=True) for x in range(self.out.shape[0]//19)]
|
67 |
+
, axis=1).set_axis(range(self.out.shape[0]//19*2), axis='columns')
|
68 |
+
# save to temporary file to be downloaded
|
69 |
+
self.out.round(2).to_csv(self.out_buffer, index=False)
|
70 |
+
return (self.out.style
|
71 |
+
.format(lambda x: f'{x:.2f}' if isinstance(x, float) else x)
|
72 |
+
.hide(axis=0)
|
73 |
+
.hide(axis=1)
|
74 |
+
.background_gradient(cmap="RdYlGn", vmax=8, vmin=-8)
|
75 |
+
.to_html(justify='center'))
|
76 |
+
|
77 |
+
def calculate(self):
|
78 |
+
"run model and parse output"
|
79 |
+
self.model.run_model(self)
|
80 |
+
return self.parse_output()
|
model.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import HfApi, ModelFilter
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
4 |
+
|
5 |
+
# fetch suitable ESM models from HuggingFace Hub
|
6 |
+
MODELS = [m.modelId for m in HfApi().list_models(filter=ModelFilter(author="facebook", model_name="esm", task="fill-mask"), sort="lastModified", direction=-1)]
|
7 |
+
if not any(MODELS):
|
8 |
+
raise RuntimeError("Error while retrieving models from HuggingFace Hub")
|
9 |
+
|
10 |
+
class Model:
|
11 |
+
"""Wrapper for ESM models"""
|
12 |
+
def __init__(self, model_name:str=""):
|
13 |
+
"load selected model and tokenizer"
|
14 |
+
self.model_name = model_name
|
15 |
+
if model_name:
|
16 |
+
self.model = AutoModelForMaskedLM.from_pretrained(model_name)
|
17 |
+
self.batch_converter = AutoTokenizer.from_pretrained(model_name)
|
18 |
+
self.alphabet = self.batch_converter.get_vocab()
|
19 |
+
if torch.cuda.is_available():
|
20 |
+
self.model = self.model.cuda()
|
21 |
+
|
22 |
+
def __rshift__(self, batch_tokens:torch.Tensor) -> torch.Tensor:
|
23 |
+
"run model on batch of tokens"
|
24 |
+
return self.model(batch_tokens)["logits"]
|
25 |
+
|
26 |
+
def __lshift__(self, input:str) -> torch.Tensor:
|
27 |
+
"convert input string to batch of tokens"
|
28 |
+
return self.batch_converter(input, return_tensors="pt")["input_ids"]
|
29 |
+
|
30 |
+
def __getitem__(self, key:str) -> int:
|
31 |
+
"get token ID from character"
|
32 |
+
return self.alphabet[key]
|
33 |
+
|
34 |
+
def run_model(self, data):
|
35 |
+
"run model on data"
|
36 |
+
def label_row(row, token_probs):
|
37 |
+
"label row with score"
|
38 |
+
wt, idx, mt = row[0], int(row[1:-1])-1, row[-1]
|
39 |
+
score = token_probs[0, 1+idx, self[mt]] - token_probs[0, 1+idx, self[wt]]
|
40 |
+
return score.item()
|
41 |
+
|
42 |
+
batch_tokens = self<<data.seq
|
43 |
+
|
44 |
+
# run model with selected scoring strategy (info thereof available in the original ESM paper)
|
45 |
+
if data.scoring_strategy.startswith("wt-marginals"):
|
46 |
+
with torch.no_grad():
|
47 |
+
token_probs = torch.log_softmax(self>>batch_tokens, dim=-1)
|
48 |
+
data.out[self.model_name] = data.sub.apply(
|
49 |
+
lambda row: label_row(
|
50 |
+
row['0'],
|
51 |
+
token_probs,
|
52 |
+
),
|
53 |
+
axis=1,
|
54 |
+
)
|
55 |
+
elif data.scoring_strategy.startswith("masked-marginals"):
|
56 |
+
all_token_probs = []
|
57 |
+
for i in range(batch_tokens.size()[1]):
|
58 |
+
batch_tokens_masked = batch_tokens.clone()
|
59 |
+
batch_tokens_masked[0, i] = self['<mask>']
|
60 |
+
with torch.no_grad():
|
61 |
+
token_probs = torch.log_softmax(
|
62 |
+
self>>batch_tokens_masked, dim=-1
|
63 |
+
)
|
64 |
+
all_token_probs.append(token_probs[:, i])
|
65 |
+
token_probs = torch.cat(all_token_probs, dim=0).unsqueeze(0)
|
66 |
+
data.out[self.model_name] = data.sub.apply(
|
67 |
+
lambda row: label_row(
|
68 |
+
row['0'],
|
69 |
+
token_probs,
|
70 |
+
),
|
71 |
+
axis=1,
|
72 |
+
)
|