--- title: Audio Diffusion emoji: 🎵 colorFrom: pink colorTo: blue sdk: gradio sdk_version: 3.1.4 app_file: app.py pinned: false license: gpl-3.0 --- # audio-diffusion [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/gradio_app.ipynb) ### Apply [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239) using the new Hugging Face [diffusers](https://github.com/huggingface/diffusers) package to synthesize music instead of images. --- **UPDATES**: 4/10/2022 It is now possible to mask parts of the input audio during generation which means you can stitch several samples together (think "out-painting"). 27/9/2022 You can now generate an audio based on a previous one. You can use this to generate variations of the same audio or even to "remix" a track (via a sort of "style transfer"). You can find examples of how to do this in the [`test_model.ipynb`](https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/test_model.ipynb) notebook. --- ![mel spectrogram](mel.png) --- Audio can be represented as images by transforming to a [mel spectrogram](https://en.wikipedia.org/wiki/Mel-frequency_cepstrum), such as the one shown above. The class `Mel` in `mel.py` can convert a slice of audio into a mel spectrogram of `x_res` x `y_res` and vice versa. The higher the resolution, the less audio information will be lost. You can see how this works in the [`test_mel.ipynb`](https://github.com/teticio/audio-diffusion/blob/main/notebooks/test_mel.ipynb) notebook. A DDPM model is trained on a set of mel spectrograms that have been generated from a directory of audio files. It is then used to synthesize similar mel spectrograms, which are then converted back into audio. You can play around with some pretrained models on [Google Colab](https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/test_model.ipynb) or [Hugging Face spaces](https://huggingface.co/spaces/teticio/audio-diffusion). Check out some automatically generated loops [here](https://soundcloud.com/teticio2/sets/audio-diffusion-loops). | Model | Dataset | Description | |-------|---------|-------------| | [teticio/audio-diffusion-256](https://huggingface.co/teticio/audio-diffusion-256) | [teticio/audio-diffusion-256](https://huggingface.co/datasets/teticio/audio-diffusion-256) | My "liked" Spotify playlist | | [teticio/audio-diffusion-breaks-256](https://huggingface.co/teticio/audio-diffusion-breaks-256) | [teticio/audio-diffusion-breaks-256](https://huggingface.co/datasets/teticio/audio-diffusion-breaks-256) | Samples that have been used in music, sourced from [WhoSampled](https://whosampled.com) and [YouTube](https://youtube.com) | | [teticio/audio-diffusion-instrumental-hiphop-256](https://huggingface.co/teticio/audio-diffusion-instrumental-hiphop-256) | [teticio/audio-diffusion-instrumental-hiphop-256](https://huggingface.co/datasets/teticio/audio-diffusion-instrumental-hiphop-256) | Instrumental Hip Hop music | --- ## Generate Mel spectrogram dataset from directory of audio files #### Training can be run with Mel spectrograms of resolution 64x64 on a single commercial grade GPU (e.g. RTX 2080 Ti). The `hop_length` should be set to 1024 for better results. ```bash python audio_to_images.py \ --resolution 64 \ --hop_length 1024 \ --input_dir path-to-audio-files \ --output_dir data-test ``` #### Generate dataset of 256x256 Mel spectrograms and push to hub (you will need to be authenticated with `huggingface-cli login`). ```bash python audio_to_images.py \ --resolution 256 \ --input_dir path-to-audio-files \ --output_dir data-256 \ --push_to_hub teticio/audio-diffusion-256 ``` ## Train model #### Run training on local machine. ```bash accelerate launch --config_file accelerate_local.yaml \ train_unconditional.py \ --dataset_name data-64 \ --resolution 64 \ --hop_length 1024 \ --output_dir ddpm-ema-audio-64 \ --train_batch_size 16 \ --num_epochs 100 \ --gradient_accumulation_steps 1 \ --learning_rate 1e-4 \ --lr_warmup_steps 500 \ --mixed_precision no ``` #### Run training on local machine with `batch_size` of 2 and `gradient_accumulation_steps` 8 to compensate, so that 256x256 resolution model fits on commercial grade GPU and push to hub. ```bash accelerate launch --config_file accelerate_local.yaml \ train_unconditional.py \ --dataset_name teticio/audio-diffusion-256 \ --resolution 256 \ --output_dir latent-audio-diffusion-256 \ --num_epochs 100 \ --train_batch_size 2 \ --eval_batch_size 2 \ --gradient_accumulation_steps 8 \ --learning_rate 1e-4 \ --lr_warmup_steps 500 \ --mixed_precision no \ --push_to_hub True \ --hub_model_id latent-audio-diffusion-256 \ --hub_token $(cat $HOME/.huggingface/token) ``` #### Run training on SageMaker. ```bash accelerate launch --config_file accelerate_sagemaker.yaml \ strain_unconditional.py \ --dataset_name teticio/audio-diffusion-256 \ --resolution 256 \ --output_dir ddpm-ema-audio-256 \ --train_batch_size 16 \ --num_epochs 100 \ --gradient_accumulation_steps 1 \ --learning_rate 1e-4 \ --lr_warmup_steps 500 \ --mixed_precision no ```