{ "cells": [ { "cell_type": "markdown", "id": "62c5865f", "metadata": {}, "source": [ "\"Open" ] }, { "cell_type": "code", "execution_count": null, "id": "6c7800a6", "metadata": {}, "outputs": [], "source": [ "try:\n", " # are we running on Google Colab?\n", " import google.colab\n", " !git clone -q https://github.com/teticio/audio-diffusion.git\n", " %cd audio-diffusion\n", " !pip install -q -r requirements.txt\n", "except:\n", " pass" ] }, { "cell_type": "code", "execution_count": null, "id": "b447e2c4", "metadata": {}, "outputs": [], "source": [ "import os\n", "import sys\n", "sys.path.insert(0, os.path.dirname(os.path.abspath(\"\")))" ] }, { "cell_type": "code", "execution_count": null, "id": "c2fc0e7a", "metadata": {}, "outputs": [], "source": [ "import torch\n", "import random\n", "import numpy as np\n", "from datasets import load_dataset\n", "from IPython.display import Audio\n", "from audiodiffusion.mel import Mel\n", "from audiodiffusion import AudioDiffusion" ] }, { "cell_type": "markdown", "id": "7fd945bb", "metadata": {}, "source": [ "### Select model" ] }, { "cell_type": "code", "execution_count": null, "id": "97f24046", "metadata": {}, "outputs": [], "source": [ "#@markdown teticio/audio-diffusion-256 - trained on my Spotify \"liked\" playlist\n", "\n", "#@markdown teticio/audio-diffusion-breaks-256 - trained on samples used in music\n", "\n", "#@markdown teticio/audio-diffusion-instrumental-hiphop-256 - trained on instrumental hiphop\n", "\n", "model_id = \"teticio/audio-diffusion-256\" #@param [\"teticio/audio-diffusion-256\", \"teticio/audio-diffusion-breaks-256\", \"audio-diffusion-instrumenal-hiphop-256\"]" ] }, { "cell_type": "markdown", "id": "011fb5a1", "metadata": {}, "source": [ "### Run model inference to generate mel spectrogram, audios and loops" ] }, { "cell_type": "code", "execution_count": null, "id": "a3d45c36", "metadata": {}, "outputs": [], "source": [ "audio_diffusion = AudioDiffusion(model_id=model_id)" ] }, { "cell_type": "code", "execution_count": null, "id": "b809fed5", "metadata": {}, "outputs": [], "source": [ "generator = torch.Generator()\n", "for _ in range(10):\n", " print(f'Seed = {generator.seed()}')\n", " image, (sample_rate, audio) = audio_diffusion.generate_spectrogram_and_audio(generator)\n", " display(image)\n", " display(Audio(audio, rate=sample_rate))\n", " loop = AudioDiffusion.loop_it(audio, sample_rate)\n", " if loop is not None:\n", " display(Audio(loop, rate=sample_rate))\n", " else:\n", " print(\"Unable to determine loop points\")" ] }, { "cell_type": "markdown", "id": "0bb03e33", "metadata": {}, "source": [ "### Generate variations of audios" ] }, { "cell_type": "markdown", "id": "80e5b5fa", "metadata": {}, "source": [ "Try playing around with `start_steps`. Values closer to zero will produce new samples, while values closer to `steps` will produce samples more faithful to the original. You can also try generatring variations of a `slice` of an `audio_file` instead of passing in a `raw_audio`." ] }, { "cell_type": "code", "execution_count": null, "id": "a7e637e5", "metadata": {}, "outputs": [], "source": [ "seed = 16183389798189209330 #@param {type:\"long\"}\n", "image, (sample_rate,\n", " audio) = audio_diffusion.generate_spectrogram_and_audio_from_audio(\n", " generator=torch.Generator().manual_seed(seed))\n", "display(image)\n", "display(Audio(audio, rate=sample_rate))" ] }, { "cell_type": "code", "execution_count": null, "id": "a0fefe28", "metadata": { "scrolled": false }, "outputs": [], "source": [ "start_steps = 500 #@param {type:\"slider\", min:0, max:1000, step:10}\n", "loop = AudioDiffusion.loop_it(audio, sample_rate, loops=1)\n", "for variation in range(12):\n", " image2, (\n", " sample_rate, audio2\n", " ) = audio_diffusion.generate_spectrogram_and_audio_from_audio(\n", " raw_audio=audio,\n", " slice=0,\n", " start_step=start_steps,\n", " steps=1000)\n", " display(image2)\n", " display(Audio(audio2, rate=sample_rate))\n", " loop = np.concatenate([loop, AudioDiffusion.loop_it(audio2, sample_rate, loops=1)])\n", "display(Audio(loop, rate=sample_rate))" ] }, { "cell_type": "markdown", "id": "ef54cef3", "metadata": {}, "source": [ "### Compare results with random sample from training set" ] }, { "cell_type": "code", "execution_count": null, "id": "f028a3c8", "metadata": {}, "outputs": [], "source": [ "mel = Mel(x_res=256, y_res=256)" ] }, { "cell_type": "code", "execution_count": null, "id": "269ee816", "metadata": {}, "outputs": [], "source": [ "ds = load_dataset(model_id)" ] }, { "cell_type": "code", "execution_count": null, "id": "b9023846", "metadata": {}, "outputs": [], "source": [ "image = random.choice(ds['train'])['image']\n", "image" ] }, { "cell_type": "code", "execution_count": null, "id": "492e2334", "metadata": {}, "outputs": [], "source": [ "audio = mel.image_to_audio(image)\n", "Audio(data=audio, rate=mel.get_sample_rate())" ] }, { "cell_type": "code", "execution_count": null, "id": "c59bcc0f", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "accelerator": "GPU", "colab": { "provenance": [] }, "gpuClass": "standard", "kernelspec": { "display_name": "huggingface", "language": "python", "name": "huggingface" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.4" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 5 }