import warnings warnings.filterwarnings('ignore') import librosa import numpy as np from PIL import Image class Mel: def __init__( self, x_res=256, y_res=256, sample_rate=22050, n_fft=2048, hop_length=512, top_db=80, ): self.x_res = x_res self.y_res = y_res self.sr = sample_rate self.n_fft = n_fft self.hop_length = hop_length self.n_mels = self.y_res self.slice_size = self.x_res * self.hop_length - 1 self.fmax = self.sr / 2 self.top_db = top_db self.y = None def load_audio(self, audio_file): self.y, _ = librosa.load(audio_file, mono=True) def get_number_of_slices(self): return len(self.y) // self.slice_size def get_sample_rate(self): return self.sr def audio_slice_to_image(self, slice): S = librosa.feature.melspectrogram( y=self.y[self.slice_size * slice : self.slice_size * (slice + 1)], sr=self.sr, n_fft=self.n_fft, hop_length=self.hop_length, n_mels=self.n_mels, fmax=self.fmax, ) log_S = librosa.power_to_db(S, ref=np.max, top_db=self.top_db) bytedata = ( ((log_S + self.top_db) * 255 / self.top_db).clip(0, 255) + 0.5 ).astype(np.uint8) image = Image.frombytes("L", log_S.shape, bytedata.tobytes()) return image def image_to_audio(self, image): bytedata = np.frombuffer(image.tobytes(), dtype="uint8").reshape( (image.width, image.height) ) log_S = bytedata.astype("float") * self.top_db / 255 - self.top_db S = librosa.db_to_power(log_S) audio = librosa.feature.inverse.mel_to_audio( S, sr=self.sr, n_fft=self.n_fft, hop_length=self.hop_length ) return audio