Spaces:
Runtime error
Runtime error
add audio_diffusion_pipeline notebook
Browse files
notebooks/audio_diffusion_pipeline.ipynb
ADDED
@@ -0,0 +1,688 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "fef7e1fb",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"<a href=\"https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/audio_diffusion_pipeline.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "markdown",
|
13 |
+
"id": "2ada074b",
|
14 |
+
"metadata": {},
|
15 |
+
"source": [
|
16 |
+
"# Audio Diffusion\n",
|
17 |
+
"For training scripts and notebooks visit https://github.com/teticio/audio-diffusion"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"cell_type": "code",
|
22 |
+
"execution_count": null,
|
23 |
+
"id": "6c7800a6",
|
24 |
+
"metadata": {},
|
25 |
+
"outputs": [],
|
26 |
+
"source": [
|
27 |
+
"try:\n",
|
28 |
+
" # are we running on Google Colab?\n",
|
29 |
+
" import google.colab\n",
|
30 |
+
" !pip install -q -r diffusers torch librosa\n",
|
31 |
+
"except:\n",
|
32 |
+
" pass"
|
33 |
+
]
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"cell_type": "code",
|
37 |
+
"execution_count": null,
|
38 |
+
"id": "c2fc0e7a",
|
39 |
+
"metadata": {},
|
40 |
+
"outputs": [],
|
41 |
+
"source": [
|
42 |
+
"import torch\n",
|
43 |
+
"import random\n",
|
44 |
+
"import librosa\n",
|
45 |
+
"import numpy as np\n",
|
46 |
+
"from datasets import load_dataset\n",
|
47 |
+
"from IPython.display import Audio\n",
|
48 |
+
"from librosa.beat import beat_track\n",
|
49 |
+
"from diffusers import DiffusionPipeline, Mel"
|
50 |
+
]
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"cell_type": "code",
|
54 |
+
"execution_count": null,
|
55 |
+
"id": "b294a94a",
|
56 |
+
"metadata": {},
|
57 |
+
"outputs": [],
|
58 |
+
"source": [
|
59 |
+
"mel = Mel()\n",
|
60 |
+
"sample_rate = mel.get_sample_rate()\n",
|
61 |
+
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
|
62 |
+
"generator = torch.Generator(device=device)"
|
63 |
+
]
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"cell_type": "markdown",
|
67 |
+
"id": "f3feb265",
|
68 |
+
"metadata": {},
|
69 |
+
"source": [
|
70 |
+
"## DDPM (De-noising Diffusion Probabilistic Models)"
|
71 |
+
]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "markdown",
|
75 |
+
"id": "7fd945bb",
|
76 |
+
"metadata": {},
|
77 |
+
"source": [
|
78 |
+
"### Select model"
|
79 |
+
]
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"cell_type": "code",
|
83 |
+
"execution_count": null,
|
84 |
+
"id": "97f24046",
|
85 |
+
"metadata": {},
|
86 |
+
"outputs": [],
|
87 |
+
"source": [
|
88 |
+
"#@markdown teticio/audio-diffusion-256 - trained on my Spotify \"liked\" playlist\n",
|
89 |
+
"\n",
|
90 |
+
"#@markdown teticio/audio-diffusion-breaks-256 - trained on samples used in music\n",
|
91 |
+
"\n",
|
92 |
+
"#@markdown teticio/audio-diffusion-instrumental-hiphop-256 - trained on instrumental hiphop\n",
|
93 |
+
"\n",
|
94 |
+
"model_id = \"teticio/audio-diffusion-256\" #@param [\"teticio/audio-diffusion-256\", \"teticio/audio-diffusion-breaks-256\", \"audio-diffusion-instrumenal-hiphop-256\", \"teticio/audio-diffusion-ddim-256\"]"
|
95 |
+
]
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"cell_type": "code",
|
99 |
+
"execution_count": null,
|
100 |
+
"id": "a3d45c36",
|
101 |
+
"metadata": {},
|
102 |
+
"outputs": [],
|
103 |
+
"source": [
|
104 |
+
"audio_diffusion = DiffusionPipeline.from_pretrained(model_id).to(device)"
|
105 |
+
]
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"cell_type": "code",
|
109 |
+
"execution_count": null,
|
110 |
+
"id": "ab0d705c",
|
111 |
+
"metadata": {},
|
112 |
+
"outputs": [],
|
113 |
+
"source": [
|
114 |
+
"def loop_it(audio: np.ndarray,\n",
|
115 |
+
" sample_rate: int,\n",
|
116 |
+
" loops: int = 12) -> np.ndarray:\n",
|
117 |
+
" \"\"\"Loop audio\n",
|
118 |
+
"\n",
|
119 |
+
" Args:\n",
|
120 |
+
" audio (np.ndarray): audio as numpy array\n",
|
121 |
+
" sample_rate (int): sample rate of audio\n",
|
122 |
+
" loops (int): number of times to loop\n",
|
123 |
+
"\n",
|
124 |
+
" Returns:\n",
|
125 |
+
" (float, np.ndarray): sample rate and raw audio or None\n",
|
126 |
+
" \"\"\"\n",
|
127 |
+
" _, beats = beat_track(y=audio, sr=sample_rate, units='samples')\n",
|
128 |
+
" for beats_in_bar in [16, 12, 8, 4]:\n",
|
129 |
+
" if len(beats) > beats_in_bar:\n",
|
130 |
+
" return np.tile(audio[beats[0]:beats[beats_in_bar]], loops)\n",
|
131 |
+
" return None"
|
132 |
+
]
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"cell_type": "markdown",
|
136 |
+
"id": "011fb5a1",
|
137 |
+
"metadata": {},
|
138 |
+
"source": [
|
139 |
+
"### Run model inference to generate mel spectrogram, audios and loops"
|
140 |
+
]
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"cell_type": "code",
|
144 |
+
"execution_count": null,
|
145 |
+
"id": "b809fed5",
|
146 |
+
"metadata": {},
|
147 |
+
"outputs": [],
|
148 |
+
"source": [
|
149 |
+
"for _ in range(10):\n",
|
150 |
+
" seed = generator.seed()\n",
|
151 |
+
" print(f'Seed = {seed}')\n",
|
152 |
+
" generator.manual_seed(seed)\n",
|
153 |
+
" output = audio_diffusion(mel=mel, generator=generator)\n",
|
154 |
+
" image = output.images[0]\n",
|
155 |
+
" audio = output.audios[0, 0]\n",
|
156 |
+
" display(image)\n",
|
157 |
+
" display(Audio(audio, rate=sample_rate))\n",
|
158 |
+
" loop = loop_it(audio, sample_rate)\n",
|
159 |
+
" if loop is not None:\n",
|
160 |
+
" display(Audio(loop, rate=sample_rate))\n",
|
161 |
+
" else:\n",
|
162 |
+
" print(\"Unable to determine loop points\")"
|
163 |
+
]
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"cell_type": "markdown",
|
167 |
+
"id": "0bb03e33",
|
168 |
+
"metadata": {},
|
169 |
+
"source": [
|
170 |
+
"### Generate variations of audios"
|
171 |
+
]
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"cell_type": "markdown",
|
175 |
+
"id": "80e5b5fa",
|
176 |
+
"metadata": {},
|
177 |
+
"source": [
|
178 |
+
"Try playing around with `start_steps`. Values closer to zero will produce new samples, while values closer to 1,000 will produce samples more faithful to the original."
|
179 |
+
]
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"cell_type": "code",
|
183 |
+
"execution_count": null,
|
184 |
+
"id": "5074ec11",
|
185 |
+
"metadata": {},
|
186 |
+
"outputs": [],
|
187 |
+
"source": [
|
188 |
+
"seed = 2391504374279719 #@param {type:\"integer\"}\n",
|
189 |
+
"generator.manual_seed(seed)\n",
|
190 |
+
"output = audio_diffusion(mel=mel, generator=generator)\n",
|
191 |
+
"image = output.images[0]\n",
|
192 |
+
"audio = output.audios[0, 0]\n",
|
193 |
+
"display(image)\n",
|
194 |
+
"display(Audio(audio, rate=sample_rate))"
|
195 |
+
]
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"cell_type": "code",
|
199 |
+
"execution_count": null,
|
200 |
+
"id": "a0fefe28",
|
201 |
+
"metadata": {
|
202 |
+
"scrolled": false
|
203 |
+
},
|
204 |
+
"outputs": [],
|
205 |
+
"source": [
|
206 |
+
"start_step = 500 #@param {type:\"slider\", min:0, max:1000, step:10}\n",
|
207 |
+
"track = loop_it(audio, sample_rate, loops=1)\n",
|
208 |
+
"for variation in range(12):\n",
|
209 |
+
" output = audio_diffusion(mel=mel, raw_audio=audio, start_step=start_step)\n",
|
210 |
+
" image2 = output.images[0]\n",
|
211 |
+
" audio2 = output.audios[0, 0]\n",
|
212 |
+
" display(image2)\n",
|
213 |
+
" display(Audio(audio2, rate=sample_rate))\n",
|
214 |
+
" track = np.concatenate([track, loop_it(audio2, sample_rate, loops=1)])\n",
|
215 |
+
"display(Audio(track, rate=sample_rate))"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"cell_type": "markdown",
|
220 |
+
"id": "58a876c1",
|
221 |
+
"metadata": {},
|
222 |
+
"source": [
|
223 |
+
"### Generate continuations (\"out-painting\")"
|
224 |
+
]
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"cell_type": "code",
|
228 |
+
"execution_count": null,
|
229 |
+
"id": "b95d5780",
|
230 |
+
"metadata": {},
|
231 |
+
"outputs": [],
|
232 |
+
"source": [
|
233 |
+
"overlap_secs = 2 #@param {type:\"integer\"}\n",
|
234 |
+
"start_step = 0 #@param {type:\"slider\", min:0, max:1000, step:10}\n",
|
235 |
+
"overlap_samples = overlap_secs * sample_rate\n",
|
236 |
+
"track = audio\n",
|
237 |
+
"for variation in range(12):\n",
|
238 |
+
" output = audio_diffusion(mel=mel,\n",
|
239 |
+
" raw_audio=audio[-overlap_samples:],\n",
|
240 |
+
" start_step=start_step,\n",
|
241 |
+
" mask_start_secs=overlap_secs)\n",
|
242 |
+
" image2 = output.images[0]\n",
|
243 |
+
" audio2 = output.audios[0, 0]\n",
|
244 |
+
" display(image2)\n",
|
245 |
+
" display(Audio(audio2, rate=sample_rate))\n",
|
246 |
+
" track = np.concatenate([track, audio2[overlap_samples:]])\n",
|
247 |
+
" audio = audio2\n",
|
248 |
+
"display(Audio(track, rate=sample_rate))"
|
249 |
+
]
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"cell_type": "markdown",
|
253 |
+
"id": "b6434d3f",
|
254 |
+
"metadata": {},
|
255 |
+
"source": [
|
256 |
+
"### Remix (style transfer)"
|
257 |
+
]
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"cell_type": "markdown",
|
261 |
+
"id": "0da030b2",
|
262 |
+
"metadata": {},
|
263 |
+
"source": [
|
264 |
+
"Alternatively, you can start from another audio altogether, resulting in a kind of style transfer. Maintaining the same seed during generation fixes the style, while masking helps stitch consecutive segments together more smoothly."
|
265 |
+
]
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"cell_type": "code",
|
269 |
+
"execution_count": null,
|
270 |
+
"id": "fc620a80",
|
271 |
+
"metadata": {},
|
272 |
+
"outputs": [],
|
273 |
+
"source": [
|
274 |
+
"try:\n",
|
275 |
+
" # are we running on Google Colab?\n",
|
276 |
+
" from google.colab import files\n",
|
277 |
+
" audio_file = list(files.upload().keys())[0]\n",
|
278 |
+
"except:\n",
|
279 |
+
" audio_file = \"/home/teticio/Music/liked/El Michels Affair - Glaciers Of Ice.mp3\""
|
280 |
+
]
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"cell_type": "code",
|
284 |
+
"execution_count": null,
|
285 |
+
"id": "5a257e69",
|
286 |
+
"metadata": {
|
287 |
+
"scrolled": false
|
288 |
+
},
|
289 |
+
"outputs": [],
|
290 |
+
"source": [
|
291 |
+
"start_step = 500 #@param {type:\"slider\", min:0, max:1000, step:10}\n",
|
292 |
+
"overlap_secs = 2 #@param {type:\"integer\"}\n",
|
293 |
+
"track_audio, _ = librosa.load(audio_file, mono=True, sr=sample_rate)\n",
|
294 |
+
"overlap_samples = overlap_secs * sample_rate\n",
|
295 |
+
"slice_size = mel.x_res * mel.hop_length\n",
|
296 |
+
"stride = slice_size - overlap_samples\n",
|
297 |
+
"generator = torch.Generator(device=device)\n",
|
298 |
+
"seed = generator.seed()\n",
|
299 |
+
"print(f'Seed = {seed}')\n",
|
300 |
+
"track = np.array([])\n",
|
301 |
+
"not_first = 0\n",
|
302 |
+
"for sample in range(len(track_audio) // stride):\n",
|
303 |
+
" generator.manual_seed(seed)\n",
|
304 |
+
" audio = np.array(track_audio[sample * stride:sample * stride + slice_size])\n",
|
305 |
+
" if not_first:\n",
|
306 |
+
" # Normalize and re-insert generated audio\n",
|
307 |
+
" audio[:overlap_samples] = audio2[-overlap_samples:] * np.max(\n",
|
308 |
+
" audio[:overlap_samples]) / np.max(audio2[-overlap_samples:])\n",
|
309 |
+
" output = audio_diffusion(mel=mel,\n",
|
310 |
+
" raw_audio=audio,\n",
|
311 |
+
" start_step=start_step,\n",
|
312 |
+
" generator=generator,\n",
|
313 |
+
" mask_start_secs=overlap_secs * not_first)\n",
|
314 |
+
" audio2 = output.audios[0, 0]\n",
|
315 |
+
" track = np.concatenate([track, audio2[overlap_samples * not_first:]])\n",
|
316 |
+
" not_first = 1\n",
|
317 |
+
" display(Audio(track, rate=sample_rate))"
|
318 |
+
]
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"cell_type": "markdown",
|
322 |
+
"id": "924ff9d5",
|
323 |
+
"metadata": {},
|
324 |
+
"source": [
|
325 |
+
"### Fill the gap (\"in-painting\")"
|
326 |
+
]
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"cell_type": "code",
|
330 |
+
"execution_count": null,
|
331 |
+
"id": "0200264c",
|
332 |
+
"metadata": {},
|
333 |
+
"outputs": [],
|
334 |
+
"source": [
|
335 |
+
"sample = 3 #@param {type:\"integer\"}\n",
|
336 |
+
"raw_audio = track_audio[sample * stride:sample * stride + slice_size]\n",
|
337 |
+
"output = audio_diffusion(mel=mel,\n",
|
338 |
+
" raw_audio=raw_audio,\n",
|
339 |
+
" mask_start_secs=1,\n",
|
340 |
+
" mask_end_secs=1,\n",
|
341 |
+
" step_generator=torch.Generator(device=device))\n",
|
342 |
+
"audio2 = output.audios[0, 0]\n",
|
343 |
+
"display(Audio(audio, rate=sample_rate))\n",
|
344 |
+
"display(Audio(audio2, rate=sample_rate))"
|
345 |
+
]
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"cell_type": "markdown",
|
349 |
+
"id": "efc32dae",
|
350 |
+
"metadata": {},
|
351 |
+
"source": [
|
352 |
+
"## DDIM (De-noising Diffusion Implicit Models)"
|
353 |
+
]
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"cell_type": "code",
|
357 |
+
"execution_count": null,
|
358 |
+
"id": "a021f78a",
|
359 |
+
"metadata": {},
|
360 |
+
"outputs": [],
|
361 |
+
"source": [
|
362 |
+
"audio_diffusion = DiffusionPipeline.from_pretrained('teticio/audio-diffusion-ddim-256').to(device)"
|
363 |
+
]
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"cell_type": "markdown",
|
367 |
+
"id": "deb23339",
|
368 |
+
"metadata": {},
|
369 |
+
"source": [
|
370 |
+
"### Generation can be done in many fewer steps with DDIMs"
|
371 |
+
]
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"cell_type": "code",
|
375 |
+
"execution_count": null,
|
376 |
+
"id": "c105a497",
|
377 |
+
"metadata": {},
|
378 |
+
"outputs": [],
|
379 |
+
"source": [
|
380 |
+
"for _ in range(10):\n",
|
381 |
+
" seed = generator.seed()\n",
|
382 |
+
" print(f'Seed = {seed}')\n",
|
383 |
+
" generator.manual_seed(seed)\n",
|
384 |
+
" output = audio_diffusion(mel=mel, generator=generator)\n",
|
385 |
+
" image = output.images[0]\n",
|
386 |
+
" audio = output.audios[0, 0]\n",
|
387 |
+
" display(image)\n",
|
388 |
+
" display(Audio(audio, rate=sample_rate))\n",
|
389 |
+
" loop = loop_it(audio, sample_rate)\n",
|
390 |
+
" if loop is not None:\n",
|
391 |
+
" display(Audio(loop, rate=sample_rate))\n",
|
392 |
+
" else:\n",
|
393 |
+
" print(\"Unable to determine loop points\")"
|
394 |
+
]
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"cell_type": "markdown",
|
398 |
+
"id": "cab4692c",
|
399 |
+
"metadata": {},
|
400 |
+
"source": [
|
401 |
+
"The parameter eta controls the variance:\n",
|
402 |
+
"* 0 - DDIM (deterministic)\n",
|
403 |
+
"* 1 - DDPM (De-noising Diffusion Probabilistic Model)"
|
404 |
+
]
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"cell_type": "code",
|
408 |
+
"execution_count": null,
|
409 |
+
"id": "72bdd207",
|
410 |
+
"metadata": {},
|
411 |
+
"outputs": [],
|
412 |
+
"source": [
|
413 |
+
"output = audio_diffusion(mel=mel, steps=1000, generator=generator, eta=1)\n",
|
414 |
+
"image = output.images[0]\n",
|
415 |
+
"audio = output.audios[0, 0]\n",
|
416 |
+
"display(image)\n",
|
417 |
+
"display(Audio(audio, rate=sample_rate))"
|
418 |
+
]
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"cell_type": "markdown",
|
422 |
+
"id": "b8d5442c",
|
423 |
+
"metadata": {},
|
424 |
+
"source": [
|
425 |
+
"### DDIMs can be used as encoders..."
|
426 |
+
]
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"cell_type": "code",
|
430 |
+
"execution_count": null,
|
431 |
+
"id": "269ee816",
|
432 |
+
"metadata": {},
|
433 |
+
"outputs": [],
|
434 |
+
"source": [
|
435 |
+
"# Doesn't have to be an audio from the train dataset, this is just for convenience\n",
|
436 |
+
"ds = load_dataset('teticio/audio-diffusion-256')"
|
437 |
+
]
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"cell_type": "code",
|
441 |
+
"execution_count": null,
|
442 |
+
"id": "278d1d80",
|
443 |
+
"metadata": {},
|
444 |
+
"outputs": [],
|
445 |
+
"source": [
|
446 |
+
"image = ds['train'][264]['image']\n",
|
447 |
+
"display(Audio(mel.image_to_audio(image), rate=sample_rate))"
|
448 |
+
]
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"cell_type": "code",
|
452 |
+
"execution_count": null,
|
453 |
+
"id": "912b54e4",
|
454 |
+
"metadata": {},
|
455 |
+
"outputs": [],
|
456 |
+
"source": [
|
457 |
+
"noise = audio_diffusion.encode([image])"
|
458 |
+
]
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"cell_type": "code",
|
462 |
+
"execution_count": null,
|
463 |
+
"id": "c7b31f97",
|
464 |
+
"metadata": {},
|
465 |
+
"outputs": [],
|
466 |
+
"source": [
|
467 |
+
"# Reconstruct original audio from noise\n",
|
468 |
+
"output = audio_diffusion(mel=mel, noise=noise, generator=generator)\n",
|
469 |
+
"image = output.images[0]\n",
|
470 |
+
"audio = output.audios[0, 0]\n",
|
471 |
+
"display(Audio(audio, rate=sample_rate))"
|
472 |
+
]
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"cell_type": "markdown",
|
476 |
+
"id": "998c776b",
|
477 |
+
"metadata": {},
|
478 |
+
"source": [
|
479 |
+
"### ...or to interpolate between audios"
|
480 |
+
]
|
481 |
+
},
|
482 |
+
{
|
483 |
+
"cell_type": "code",
|
484 |
+
"execution_count": null,
|
485 |
+
"id": "33f82367",
|
486 |
+
"metadata": {},
|
487 |
+
"outputs": [],
|
488 |
+
"source": [
|
489 |
+
"image2 = ds['train'][15978]['image']\n",
|
490 |
+
"display(Audio(mel.image_to_audio(image2), rate=sample_rate))"
|
491 |
+
]
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"cell_type": "code",
|
495 |
+
"execution_count": null,
|
496 |
+
"id": "f93fb6c0",
|
497 |
+
"metadata": {},
|
498 |
+
"outputs": [],
|
499 |
+
"source": [
|
500 |
+
"noise2 = audio_diffusion.encode([image2])"
|
501 |
+
]
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"cell_type": "code",
|
505 |
+
"execution_count": null,
|
506 |
+
"id": "a4190563",
|
507 |
+
"metadata": {},
|
508 |
+
"outputs": [],
|
509 |
+
"source": [
|
510 |
+
"alpha = 0.5 #@param {type:\"slider\", min:0, max:1, step:0.1}\n",
|
511 |
+
"output = audio_diffusion(\n",
|
512 |
+
" mel=mel,\n",
|
513 |
+
" noise=audio_diffusion.slerp(noise, noise2, alpha),\n",
|
514 |
+
" generator=generator)\n",
|
515 |
+
"audio = output.audios[0, 0]\n",
|
516 |
+
"display(Audio(mel.image_to_audio(image), rate=sample_rate))\n",
|
517 |
+
"display(Audio(mel.image_to_audio(image2), rate=sample_rate))\n",
|
518 |
+
"display(Audio(audio, rate=sample_rate))"
|
519 |
+
]
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"cell_type": "markdown",
|
523 |
+
"id": "9b244547",
|
524 |
+
"metadata": {},
|
525 |
+
"source": [
|
526 |
+
"## Latent Audio Diffusion\n",
|
527 |
+
"Instead of de-noising images directly in the pixel space, we can work in the latent space of a pre-trained VAE (Variational AutoEncoder). This is much faster to train and run inference on, although the quality suffers as there are now three stages involved in encoding / decoding: mel spectrogram, VAE and de-noising."
|
528 |
+
]
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"cell_type": "code",
|
532 |
+
"execution_count": null,
|
533 |
+
"id": "a88b3fbb",
|
534 |
+
"metadata": {},
|
535 |
+
"outputs": [],
|
536 |
+
"source": [
|
537 |
+
"model_id = \"teticio/latent-audio-diffusion-ddim-256\" #@param [\"teticio/latent-audio-diffusion-256\", \"teticio/latent-audio-diffusion-ddim-256\"]"
|
538 |
+
]
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"cell_type": "code",
|
542 |
+
"execution_count": null,
|
543 |
+
"id": "15e353ee",
|
544 |
+
"metadata": {},
|
545 |
+
"outputs": [],
|
546 |
+
"source": [
|
547 |
+
"audio_diffusion = DiffusionPipeline.from_pretrained(model_id).to(device)"
|
548 |
+
]
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"cell_type": "code",
|
552 |
+
"execution_count": null,
|
553 |
+
"id": "fa0f0c8c",
|
554 |
+
"metadata": {},
|
555 |
+
"outputs": [],
|
556 |
+
"source": [
|
557 |
+
"seed = 3412253600050855 #@param {type:\"integer\"}\n",
|
558 |
+
"generator.manual_seed(seed)\n",
|
559 |
+
"output = audio_diffusion(mel=mel, generator=generator)\n",
|
560 |
+
"image = output.images[0]\n",
|
561 |
+
"audio = output.audios[0, 0]\n",
|
562 |
+
"display(image)\n",
|
563 |
+
"display(Audio(audio, rate=sample_rate))"
|
564 |
+
]
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"cell_type": "code",
|
568 |
+
"execution_count": null,
|
569 |
+
"id": "73dc575d",
|
570 |
+
"metadata": {},
|
571 |
+
"outputs": [],
|
572 |
+
"source": [
|
573 |
+
"seed2 = 7016114633369557 #@param {type:\"integer\"}\n",
|
574 |
+
"generator.manual_seed(seed2)\n",
|
575 |
+
"output = audio_diffusion(mel=mel, generator=generator)\n",
|
576 |
+
"image2 = output.images[0]\n",
|
577 |
+
"audio2 = output.audios[0, 0]\n",
|
578 |
+
"display(image2)\n",
|
579 |
+
"display(Audio(audio2, rate=sample_rate))"
|
580 |
+
]
|
581 |
+
},
|
582 |
+
{
|
583 |
+
"cell_type": "markdown",
|
584 |
+
"id": "428d2d67",
|
585 |
+
"metadata": {},
|
586 |
+
"source": [
|
587 |
+
"### Interpolation in latent space\n",
|
588 |
+
"As the VAE forces a more compact, lower dimensional representation for the spectrograms, interpolation in latent space can lead to meaningful combinations of audios. In combination with the (deterministic) DDIM from the previous section, the model can be used as an encoder / decoder to a lower dimensional space."
|
589 |
+
]
|
590 |
+
},
|
591 |
+
{
|
592 |
+
"cell_type": "code",
|
593 |
+
"execution_count": null,
|
594 |
+
"id": "72211c2b",
|
595 |
+
"metadata": {},
|
596 |
+
"outputs": [],
|
597 |
+
"source": [
|
598 |
+
"generator.manual_seed(seed)\n",
|
599 |
+
"latents = torch.randn(\n",
|
600 |
+
" (1, audio_diffusion.unet.in_channels, audio_diffusion.unet.sample_size[0],\n",
|
601 |
+
" audio_diffusion.unet.sample_size[1]),\n",
|
602 |
+
" generator=generator, device=device)\n",
|
603 |
+
"latents.shape"
|
604 |
+
]
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"cell_type": "code",
|
608 |
+
"execution_count": null,
|
609 |
+
"id": "6c732dbe",
|
610 |
+
"metadata": {},
|
611 |
+
"outputs": [],
|
612 |
+
"source": [
|
613 |
+
"generator.manual_seed(seed2)\n",
|
614 |
+
"latents2 = torch.randn(\n",
|
615 |
+
" (1, audio_diffusion.unet.in_channels, audio_diffusion.unet.sample_size[0],\n",
|
616 |
+
" audio_diffusion.unet.sample_size[1]),\n",
|
617 |
+
" generator=generator,\n",
|
618 |
+
" device=device)\n",
|
619 |
+
"latents2.shape"
|
620 |
+
]
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"cell_type": "code",
|
624 |
+
"execution_count": null,
|
625 |
+
"id": "159bcfc4",
|
626 |
+
"metadata": {},
|
627 |
+
"outputs": [],
|
628 |
+
"source": [
|
629 |
+
"alpha = 0.5 #@param {type:\"slider\", min:0, max:1, step:0.1}\n",
|
630 |
+
"output = audio_diffusion(\n",
|
631 |
+
" mel=mel,\n",
|
632 |
+
" noise=audio_diffusion.slerp(latents, latents2, alpha),\n",
|
633 |
+
" generator=generator)\n",
|
634 |
+
"audio3 = output.audios[0, 0]\n",
|
635 |
+
"display(Audio(audio, rate=mel.get_sample_rate()))\n",
|
636 |
+
"display(Audio(audio2, rate=mel.get_sample_rate()))\n",
|
637 |
+
"display(Audio(audio3, rate=sample_rate))"
|
638 |
+
]
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"cell_type": "code",
|
642 |
+
"execution_count": null,
|
643 |
+
"id": "ce6c9cc1",
|
644 |
+
"metadata": {},
|
645 |
+
"outputs": [],
|
646 |
+
"source": []
|
647 |
+
}
|
648 |
+
],
|
649 |
+
"metadata": {
|
650 |
+
"accelerator": "GPU",
|
651 |
+
"colab": {
|
652 |
+
"provenance": []
|
653 |
+
},
|
654 |
+
"gpuClass": "standard",
|
655 |
+
"kernelspec": {
|
656 |
+
"display_name": "huggingface",
|
657 |
+
"language": "python",
|
658 |
+
"name": "huggingface"
|
659 |
+
},
|
660 |
+
"language_info": {
|
661 |
+
"codemirror_mode": {
|
662 |
+
"name": "ipython",
|
663 |
+
"version": 3
|
664 |
+
},
|
665 |
+
"file_extension": ".py",
|
666 |
+
"mimetype": "text/x-python",
|
667 |
+
"name": "python",
|
668 |
+
"nbconvert_exporter": "python",
|
669 |
+
"pygments_lexer": "ipython3",
|
670 |
+
"version": "3.10.6"
|
671 |
+
},
|
672 |
+
"toc": {
|
673 |
+
"base_numbering": 1,
|
674 |
+
"nav_menu": {},
|
675 |
+
"number_sections": true,
|
676 |
+
"sideBar": true,
|
677 |
+
"skip_h1_title": false,
|
678 |
+
"title_cell": "Table of Contents",
|
679 |
+
"title_sidebar": "Contents",
|
680 |
+
"toc_cell": false,
|
681 |
+
"toc_position": {},
|
682 |
+
"toc_section_display": true,
|
683 |
+
"toc_window_display": false
|
684 |
+
}
|
685 |
+
},
|
686 |
+
"nbformat": 4,
|
687 |
+
"nbformat_minor": 5
|
688 |
+
}
|
notebooks/test_model.ipynb
CHANGED
@@ -309,10 +309,10 @@
|
|
309 |
"outputs": [],
|
310 |
"source": [
|
311 |
"slice = 3 #@param {type:\"integer\"}\n",
|
312 |
-
"
|
313 |
"_, (sample_rate,\n",
|
314 |
" audio2) = audio_diffusion.generate_spectrogram_and_audio_from_audio(\n",
|
315 |
-
" raw_audio=
|
316 |
" mask_start_secs=1,\n",
|
317 |
" mask_end_secs=1,\n",
|
318 |
" step_generator=torch.Generator())\n",
|
@@ -471,7 +471,7 @@
|
|
471 |
"metadata": {},
|
472 |
"outputs": [],
|
473 |
"source": [
|
474 |
-
"noise2 = audio_diffusion.pipe.encode([image2]
|
475 |
]
|
476 |
},
|
477 |
{
|
|
|
309 |
"outputs": [],
|
310 |
"source": [
|
311 |
"slice = 3 #@param {type:\"integer\"}\n",
|
312 |
+
"raw_audio = mel.get_audio_slice(slice)\n",
|
313 |
"_, (sample_rate,\n",
|
314 |
" audio2) = audio_diffusion.generate_spectrogram_and_audio_from_audio(\n",
|
315 |
+
" raw_audio=raw_audio,\n",
|
316 |
" mask_start_secs=1,\n",
|
317 |
" mask_end_secs=1,\n",
|
318 |
" step_generator=torch.Generator())\n",
|
|
|
471 |
"metadata": {},
|
472 |
"outputs": [],
|
473 |
"source": [
|
474 |
+
"noise2 = audio_diffusion.pipe.encode([image2])"
|
475 |
]
|
476 |
},
|
477 |
{
|