Spaces:
Runtime error
Runtime error
move sample_size out of pipeline
Browse files- audiodiffusion/__init__.py +17 -17
- notebooks/test_model.ipynb +0 -0
audiodiffusion/__init__.py
CHANGED
@@ -10,14 +10,13 @@ from diffusers import (DiffusionPipeline, DDPMPipeline, UNet2DConditionModel,
|
|
10 |
|
11 |
from .mel import Mel
|
12 |
|
13 |
-
VERSION = "1.2.
|
14 |
|
15 |
|
16 |
class AudioDiffusion:
|
17 |
|
18 |
def __init__(self,
|
19 |
model_id: str = "teticio/audio-diffusion-256",
|
20 |
-
resolution: int = 256,
|
21 |
sample_rate: int = 22050,
|
22 |
n_fft: int = 2048,
|
23 |
hop_length: int = 512,
|
@@ -28,7 +27,6 @@ class AudioDiffusion:
|
|
28 |
|
29 |
Args:
|
30 |
model_id (String): name of model (local directory or Hugging Face Hub)
|
31 |
-
resolution (int): size of square mel spectrogram in pixels
|
32 |
sample_rate (int): sample rate of audio
|
33 |
n_fft (int): number of Fast Fourier Transforms
|
34 |
hop_length (int): hop length (a higher number is recommended for lower than 256 y_res)
|
@@ -36,12 +34,6 @@ class AudioDiffusion:
|
|
36 |
cuda (bool): use CUDA?
|
37 |
progress_bar (iterable): iterable callback for progress updates or None
|
38 |
"""
|
39 |
-
self.mel = Mel(x_res=resolution,
|
40 |
-
y_res=resolution,
|
41 |
-
sample_rate=sample_rate,
|
42 |
-
n_fft=n_fft,
|
43 |
-
hop_length=hop_length,
|
44 |
-
top_db=top_db)
|
45 |
self.model_id = model_id
|
46 |
pipeline = {
|
47 |
'LatentAudioDiffusionPipeline': LatentAudioDiffusionPipeline,
|
@@ -54,6 +46,18 @@ class AudioDiffusion:
|
|
54 |
self.pipe.to("cuda")
|
55 |
self.progress_bar = progress_bar or (lambda _: _)
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
def generate_spectrogram_and_audio(
|
58 |
self,
|
59 |
steps: int = None,
|
@@ -180,12 +184,9 @@ class AudioDiffusionPipeline(DiffusionPipeline):
|
|
180 |
if steps is not None:
|
181 |
self.scheduler.set_timesteps(steps)
|
182 |
mask = None
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
images = noise = torch.randn((batch_size, self.unet.in_channels) +
|
187 |
-
sample_size,
|
188 |
-
generator=generator)
|
189 |
|
190 |
if audio_file is not None or raw_audio is not None:
|
191 |
mel.load_audio(audio_file, raw_audio)
|
@@ -207,8 +208,7 @@ class AudioDiffusionPipeline(DiffusionPipeline):
|
|
207 |
torch.tensor(input_images[:, np.newaxis, np.newaxis, :]),
|
208 |
noise, torch.tensor(steps - start_step))
|
209 |
|
210 |
-
pixels_per_second = (mel.get_sample_rate()
|
211 |
-
mel.hop_length / mel.x_res)
|
212 |
mask_start = int(mask_start_secs * pixels_per_second)
|
213 |
mask_end = int(mask_end_secs * pixels_per_second)
|
214 |
mask = self.scheduler.add_noise(
|
|
|
10 |
|
11 |
from .mel import Mel
|
12 |
|
13 |
+
VERSION = "1.2.1"
|
14 |
|
15 |
|
16 |
class AudioDiffusion:
|
17 |
|
18 |
def __init__(self,
|
19 |
model_id: str = "teticio/audio-diffusion-256",
|
|
|
20 |
sample_rate: int = 22050,
|
21 |
n_fft: int = 2048,
|
22 |
hop_length: int = 512,
|
|
|
27 |
|
28 |
Args:
|
29 |
model_id (String): name of model (local directory or Hugging Face Hub)
|
|
|
30 |
sample_rate (int): sample rate of audio
|
31 |
n_fft (int): number of Fast Fourier Transforms
|
32 |
hop_length (int): hop length (a higher number is recommended for lower than 256 y_res)
|
|
|
34 |
cuda (bool): use CUDA?
|
35 |
progress_bar (iterable): iterable callback for progress updates or None
|
36 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
self.model_id = model_id
|
38 |
pipeline = {
|
39 |
'LatentAudioDiffusionPipeline': LatentAudioDiffusionPipeline,
|
|
|
46 |
self.pipe.to("cuda")
|
47 |
self.progress_bar = progress_bar or (lambda _: _)
|
48 |
|
49 |
+
# For backwards compatibility
|
50 |
+
sample_size = (self.pipe.unet.sample_size,
|
51 |
+
self.pipe.unet.sample_size) if type(
|
52 |
+
self.pipe.unet.sample_size
|
53 |
+
) == int else self.pipe.unet.sample_size
|
54 |
+
self.mel = Mel(x_res=sample_size[1],
|
55 |
+
y_res=sample_size[0],
|
56 |
+
sample_rate=sample_rate,
|
57 |
+
n_fft=n_fft,
|
58 |
+
hop_length=hop_length,
|
59 |
+
top_db=top_db)
|
60 |
+
|
61 |
def generate_spectrogram_and_audio(
|
62 |
self,
|
63 |
steps: int = None,
|
|
|
184 |
if steps is not None:
|
185 |
self.scheduler.set_timesteps(steps)
|
186 |
mask = None
|
187 |
+
images = noise = torch.randn(
|
188 |
+
(batch_size, self.unet.in_channels, mel.y_res, mel.x_res),
|
189 |
+
generator=generator)
|
|
|
|
|
|
|
190 |
|
191 |
if audio_file is not None or raw_audio is not None:
|
192 |
mel.load_audio(audio_file, raw_audio)
|
|
|
208 |
torch.tensor(input_images[:, np.newaxis, np.newaxis, :]),
|
209 |
noise, torch.tensor(steps - start_step))
|
210 |
|
211 |
+
pixels_per_second = (mel.get_sample_rate() / mel.hop_length)
|
|
|
212 |
mask_start = int(mask_start_secs * pixels_per_second)
|
213 |
mask_end = int(mask_end_secs * pixels_per_second)
|
214 |
mask = self.scheduler.add_noise(
|
notebooks/test_model.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|