diff --git "a/notebooks/test-model.ipynb" "b/notebooks/test-model.ipynb"
deleted file mode 100644--- "a/notebooks/test-model.ipynb"
+++ /dev/null
@@ -1,440 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "id": "0fd939b0",
- "metadata": {},
- "source": [
- ""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "id": "6c7800a6",
- "metadata": {},
- "outputs": [],
- "source": [
- "try:\n",
- " # are we running on Google Colab?\n",
- " import google.colab\n",
- " !git clone -q https://github.com/teticio/audio-diffusion.git\n",
- " %cd audio-diffusion\n",
- " !pip install -q -r requirements.txt\n",
- "except:\n",
- " pass"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "id": "b447e2c4",
- "metadata": {},
- "outputs": [],
- "source": [
- "import os\n",
- "import sys\n",
- "sys.path.insert(0, os.path.dirname(os.path.abspath(\"\")))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "id": "c2fc0e7a",
- "metadata": {},
- "outputs": [],
- "source": [
- "import random\n",
- "from datasets import load_dataset\n",
- "from IPython.display import Audio\n",
- "from audiodiffusion.mel import Mel\n",
- "from audiodiffusion import AudioDiffusion"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "011fb5a1",
- "metadata": {},
- "source": [
- "### Run model inference to generate mel spectrogram and audios"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "id": "a3d45c36",
- "metadata": {},
- "outputs": [],
- "source": [
- "audio_diffusion = AudioDiffusion(model_id=\"teticio/audio-diffusion-256\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "id": "b809fed5",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "71abbf1ea35d4180bf97bdc94dd66ef1",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0/1000 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAEACAAAAAB5Gfe6AAB1U0lEQVR4nHT9x7J0SZImiH2qZnaYs0t+ErQys8hUc5HuBhqCFsFAsMACm9lgiRXeAYJHwmNgiQVkZDAiTaq6uqoyMzIifnKZk8OMqWJxnN3rXi6Z8V83t2NUTfVTYnro//Hw/4r2r/7jX5Uujj6HnPxu23/9o/O++Q//7v3iF1NvE0KXRn3+hz8G4/79D//iXdM/IqYYJe5evvwSn7X+d//hN7eP8LmLEs349PL0N5Llw//5h+9nlL4MIil27fj80zj2i3/1H79lw8/PLZWsXPa/jusvTx/+pz9rvj6tdn//vbVx7Ye8+ake7P/4/S1X4YmflX3I/vnXf2iJ//3/8aMfbuSxn6WU/eYP3fg5+er/zn91Ex+3VjuBbzef/z50jP/bj+VK/TD2pU9Jh1/++Acw1f/PH8fOj1GTJ1VjiYTz+7/8q/e1Q/Tj2O/WT1/lE2vsv//tn73731P0Pox9t3356bEkpdvf/ubHGxejH70fd0+fC7etyX/zzz/c/SubvPfeD5uHz03VfcH9h3/+4y11/0zD2A9du335bvO8Td9+87sPM2ljSinEEDezbd0m/W72F/+GQkw5xaHtuu1D8fvbCr/7tqxMr5Li2Lcvn1z/3yHDx39+W2hKMfqxX39tto91n9O3f/nhzoQYvfdj+/zFdI+jcPEX7+9n5H2M49DvHnn4GhNi835VgiUEPw7ts1UmBX/7m+/mGsax7ysjfld46SHvf/vn9y74cfRjXbK3cWvE1X/9Z7+5gR+GYRwHCmvLzPPmx+/+/L5MwziM4+ikL2nm8sAff/PbRTve6dg7x5AYxQ/a/Pi79y6sxhC8H8PgK18VmL//q2+aFIMPwZfOsYyz3/87WXz/uxV1LXIKY2XTpiyhtH73w3s75hj8OBTSL9I8VePu/e8+NMA4jIPvyJdFJQLUt39+71Iax3HoC+pLV/c2p8X9+4XTsR/HoSNvgUSa7t/fcsjJj+MwDEM/UC/Q1ft3Mx/86Mdx9GO/e7Ykufr4Z+94jH7sBz/0Q/v4OHSFvX3/YRHHMPTjOHRdu32OnLvi3Yd3LhYxDV3XdV3b9e3ua5q/u5/1PoXRj+Mw9uvNRs136/nH+9xS8t6PQ9/1uxE/rKr69m4eNj3nGMZh6NptR4p+fjPvB/J+HIeh77ptt+U+LO5ux2STH8ah77rddvuk0Gpxt+g9hTAOfd/3u5esqmgWjNKnOA7j2G0t4f4FdjnLz7vNrt0N7fb5y+OnqC7RalF0Xx67cRjHsd99/eVpyf1Qrm7s43P73O264Nv1w9/U5bDC3U0dHr9sN+049EP39PvtmnOwq6X1u/Vu6La7Ydht1u1u82hmy7J/eApt1499pwQzv5193s0a7D7nbTsM4zCs25dxXNzMypnp26efUhqj74bPv/zdnwBdzcq8e+pa347j+PLLz5/6cnz8dl5bs97uXrp+7Nfrn//uVwXI3ZZ+s/XPXb/rhvbp03/LMMnOZoWsX57WXTeMmz/ZnN/xY23D5n/9vf8j9Z9sr582sN8PfVFi+/n/+7wOv190rh13X8tybueFi8Pn/zk8/rdYoF0bWtW8vB8q0339z08/yz/8PKPcDvFPKRZ4svnxl0//7Y/hYbtr1XWfsIjzWNP2y988d39I7VCvPt7OXjoiqnncfv7D+te2XX9dtLrt/IdvjBS6+VP7p58e1/J3/M/D3/yjJwUSj+3ffO3//nn8x7njP34adVktvAnP28f/3L388bP61af250QKBQ/rP/mvfxufNoPjzS+ipiZjVL88/cPj34fHu5ftX1viJjw1NHSb9kv58z/qPbW7R/PjR7XGhe1jO6zH2VcC2abJxbsPucDu5afdF2mrbW6DccVyVtqdi5uHPz49v+zMU4mtH8iWg/uG++Fv/vFBnx431bx//PKeAs+oiO32y8sXv12/vF+4paue+i/PHu36f6Ev49/Zh/mnWPrxwzfvdShi63/+039fD7agbRpuQpsUDXXd1/+5/F9joJRSWtF2zOU73W3/6/zr8/rn7S+/+SKhlg6ASdvHv32M6X/JlfzDMgbnnXUVxfG/Pg5/kN3Y6X/+ZxaoWDn1T6HP26GMcVMuutE2jWHq9Uv/Ryrs/SZkGSQsCpM47X762+eftdj9/2bWLXapvC/GkTv57MK48/W21rFdFCHJUJth9xD9U84ABLXJO1tYO8R1eP6HJhn69Be3Oubu6f99+9vU7doQtn8YvmW7zdY071diSx9+/fyg6/zzfPZrpTl6BRrpvnR9Owuujdt+rJfSj02V23X4fXhR/rT60n+rs+wIwYz569Dl529+fp7RIDPqVqacoRt5Y+TBmjb8LliNfgcK7fNXHtax4f4//W+a+jvV0ZB0of30q6mr9NT2MfXEWw4aTHoYZn8cs6HZun7+ftWXYae9f3l6kWLjFn21aj3yhlGo3wQZfS6/+rHvvdGcH0BD/PTHreHBGGqLYohDnP38r2P/yONX+rE12Y+5GlaLUBYadM3wzZeHHOyi+yoKoMjBr+c529+/f8IXM84q3m5ugu/Wkb7ZrZZ1vQJCP6NMxvsHmmXu43qox+0N3WquC+ke143W9yF+Ujdadj9/pTr69t71240tzA/m3fsib7aqud2N1W1cd+/qpDyWDrv8oCnbD7ufOKZ3ulispSw4rGv12y37nL3m53eOnsws53LQ5Id8kzem/Jx91BaAELKG7xz1vN1995vGbDiYG3KSycssFrd4+lPR2MVqjpw5i61uY1PM0ovLJgMAZjnnL01918kQd8VSn8QtUx9jcbOud6H6bW6fh1XJCSHahHLZSc7wj+Tv8zspRjuXOKbVem09f9z2o1XagIrArO2QC7T2Y88L04/hhnwYVFHgZY4kbrX59WbWV8HTZvb5kyvEtb3TVdEzwCnlsl89/2P366p+prZsuDTGpSj6nz+8/KHSxQhNCgAQEdjN87Z7eblZGthEZOdlCkP+xS+KtTzws9ncWzMKaYgPvk8d2VDprwMAACn7rQdi3643nxFdKWXyN+FFmm79d9Uvkbt4UzrjUwHJ0kv4+if72aTFrHbOcOaZwJbjI1qS+EzJqlhPJPHl6b9uYdSv7+/Gh2YtVSGi1dOXX2+5923YJhveGW98SLkYP9uNBi2Rw6zmh3FRgRv/qQ8Lqdcv7+9WXv2iGktNu5BfNuPIRdcW0/iLrNB+PbSGS7IxYScJFqq56AcJOy7K1QOVVoUXkhOeP3UP9uuoDdQlZTWlCM2efxpG//Puu21PudLZPSmFza+7LuCnFWZVGwff0QzMqU2j+1R+lm7hNbFJJgMmffmHv5vRbnbzUtoU7KpX5fKX3qyz8coLPz7NY2OCSBsJT/RdmMcvN2NT8iosnMQ2PD/NYjC6MP2iso02rJD4uS0X3R31ZO4+f23c7LZWqnsfEZ0fdupZQUoFlNL2SYrWodTYd5/t4ncPSc38ZyySNF29mZfdlpGqTKoptr6MTRcrsxx3YCpIyWC7DXNzy/e/le7XOVdacxM+8+O2wYe+vd3GhA3slsg0u822m28KehqF0d8Zfwf48eVTOdS1XyyTzS//9nkEMW2iyb5qbj4WnanHHwqqlevOZ1vwLz8Wv4ndLXGRk1WF56Vj23Rc3yNlf1M5yv3mPrntOqdKtx9/MMXjjRMRrYqfSjyHZaEiqIqtCqDSb/smGe2zlmH19b6SRpN/NsGWreO4xGiYqtxn2GIdWq+Sb3hM1sbsMqDpcevqxLey+IH/NFZV55Jhqnfl0qP4dFcGjfOPLSUiHYpqnj+7OrTL8PzutjTJEhXkOsxYcwy1rX78aekImu7TgzYjFU35brsMXLzccYH4tJzTV03qi1LZPKBSUI41P5Qmltuyyk/z9PyuV5FfsezbZ39b2R9WLQQuVxqf2czXvl64OvvQFU0YFTnFlLPM5JsV+1CWzvWNF/9Qdp/ntp81f/GwaKwYKTuFCr2nh60EW/etC9BcKgCjS/vzy8e7D++G797t0p1JhnyZn99p+3Q7v79B8g4viUD1y9pI4725tTXKgvrmByLN/INSbazqjbX0e1OpCKz9RG7e/zpb9utmt/6h7EVSLtelRBq6slrFraGhzTmFrunZ3FlYIfpY9p1+l0Sbn9X95r3fjN/+UK6boVxWnHLxWL1b/TbQ1pq2a28ctVZCeOT5MohblFRjIyVmOaVy8fttadNy3hVLslWLm95S8l9WrV/cyugq60PIQZCz2ub7m9kPCcYuTF0n7V3FVMrsX8NyzjCGcobErJG+PIby3Q+cEXtSluibJqfcL/+Ns4VzDLWaysLErOj6uV3bOv78Z8LGLVPskMa2el+axY8kMd9yYKcwIrTz9aowTBTLfEM86K2DDqIfaJA/s2wWTfDbej6XHLdFfzPPXV4g1e8b/25oJKdlW9afVimXSvH3ZAdrWFR3C197V0Zthpe7LGM7iII39qavyBQzwWAyJBsRyGyxYBirA5sF64JsBtXvMzFrVjaasmqSnEHbcVmXRrMvhVlzdjbFUHMqXOGcQbZIS581xdTGuXuXMFLB85hvBzvTnNQ0lskgQdoiDDWTTzTYoNYQAFc7R7h90JTT9l3jxmSLW7MVtdRB7cDjTz8MtWM0ostZk//wzZyhauNHHYYP8uiHsf3lX34gfs4pyMf1EAudFTf0zegzpbkVXf1dwcazrN/b8fPIsy7bFIcQmtKyISaxoxMVHzKHHImYcjZZQoZkuRVJu6e5hZPs+1SYLEwh+BGtZBERQ8lWiw8YOYVhSz9WwbGapi8Km6FRJKfCdZFKgMrtTZXWq/G7rG1sey0kqKuMz6uPXG7GmC3c7kWkXrrm2c/jI8/dYEdDC1mnF13jfmHG3zprI5yBi/526fu4fhy//OvKBElj/v6L9LZKZUVJ7MrKyzsfImbPpn6U28XsrvguRbUwOYXHTdPDFPPqftl1uXZxYJ/sg6OYiEiVciqggph2f/mXuzjXxKs7I8RMMoYhqc5ssjFpjrb+dh4SAvWuXM4dG8hA/K6Eqs7y2FWmbH/54G5c/8Lv7kWdDxY7u7RFbqu6ySLPt9bdOIlO2odPty83VWHHofBjr9FK/DY/c2KXKSYScdux+q3Ep3Gtm5XSUnK2N2PH/eDDA+VUtPY+f67HoVomlD9/122jK5Pf3nCL8r3PksnMEPv3NwVnzmGeyQjPKtxuhm31I2lKSgRRBRO0He33Kc1NxQpriMCkknd2W35TWzIGErxNOQR5GdUPTyZXhlh+saYNQlki9+FLTXRHpovbp+34HQe/SHmDMLYN5T51syZ//kM1px/m46/LkOabl/ZTQ4t2XcqmL/4Fpfz0uEnfU3IYXwr5/LRd/Jtx2H3dhecm7ezAUcxuOyqNlfny0rXSc3h5vqNPVWna/8+/S3F8bNvGt37expQEXl03II/UCisnfJHYL1JtYeB+mZHmKGBkVSIQ5vBfzYgqMYENA0yS8U1Z/+Hb5FJpsmmj7R/+Li/uc4zd8F/CXUT5XdzFX/Jg2/Q/CVdfM27sS+q33o21bnz7f1Guf+6+Zkuabrn4XbX+/K5vchL9bzCz1rfWpKd+Hu/C6JLfypdf3w+/MHGf/xmKT9qFFHPoOl8/DLEcda3Wo9/9qHm7+RvuV5qCX8hD3I02NkLFlj8vx2Eban35k4nfhD+u/ncp7P42zj8V4/Lmfr3r07/6L3KT/092+E9umIFMV2SuAAHpn6c87pJkNiRaiFNF8vTBWvt7O/+1tov3Odih/9Vu6yi75h93w8qFH+ya+Gm439qBNGoVh58UPo22pq3fVi+SgW2fPYqR4yyurVRpG1LKq5+M/bVQDht6vDPtdmCNbN38myKuV8i28HcDhQRNKcZctQ9ZPoYBxvFcWlKYR88519wPNg6zzU2RoqiMtLFhXc7L9cugy7TBhkWSdDEMKdZt3/n2b+vwBf+H5IdOuLappOwsqyhJSqldN1mICBSNkmRYiSm0O4fqF/2X3sLGkZ7t7xKoaAM6xSDy4O3KuQcDzZ1s3i271qbbqPX227vxzySl3jW7m90QNBj9qUr2pV+lMOqcfLGJd1ypFCQ+jyZq6JKmwYwD8F01rtdNFSXHL/UavQ5LStKO7b2Tx+9FbT/493Zb9WNvR29UYlCR0TfdY8r4WO4k7eqZbAVUjOt6+2EcnpvZEJ/N5/FDq+DZ1yqnNpP4xpFmpfyDJOhTh6KAiFqLlFmHFP2vHX0cB37oLKxQXnaUudRoUJcxV9/hH6uEVf4sgl+rb4Y7k+66J2o5GrddquTnojK7EIwJ2+UQxX0u6ji+xKHxLEMsq76Sx7hbWEl9u5X8haTXQuf0nOexqjXnj3/4Zd5iKB9/655/nRnkT/9KUl83KbfhvnwRE8Q/DsWd5BCGJmRCSh8r/yloIwtVcD3bNbZ6Wup3Hx/gF+viR8CUssqoxLfSprwD9+nfSPbl5k+lG/rOzKmtyC/1XYqx/fX91y2HbqxubM53lHJOnzY3zHYIj/+sbL57LEfdzXMMT/duIe6O4mrsypmkRRQxt+UubVIRMnyXkIpiDCnbUFha99XTzU12nZRh0ySaL+/zJ+vyDrYyt8vH0aDKsZ+x6UDkOZlmOXrTiuQUaWZt7Oettz24/YtZ7nNKT9borNho2RRzA3f/btMnNe910Y7bGNytUembH0pkSbiVnMVEMz70QyqtRxLT/P1m3m0tUm+CGDdHsU3B/4yx3+KX78yf/rcW2gTNaqph1VlqfWVtWK2a/PPu25zzO/v5R1f2MmLm50lgVYVo/tXMzPy5KtOyan+9XfqQlUXTpq8k87zQ4OI4tGJLTkWjm3z/JLOCy/uvZW8TqqJZvnAx4wUPYwWDvMjKZdn7GTd+O9jlaizmZuxE9W77BfdxK7CqDdrFctlLyq5YLb54Wyxqyk0ulhRFFLHrifMjxS+LwgRfzESRO+d/9atFkyl36b3buA+Sxm+eh7xsP9zpfzcW3HqXYRcNtuk2fDcW1QJzhObPKWX8eb4d9PauHWONdNvdjTUHYHE/+rthtajX3wUeyP5mkDTOaLMsx1n93f2wsbot3ycB8h+WdTHr5h8Zd6zpOzMIIfvMRCbPrcu2KJ2tCqgKDJW+q+oq3Q7mzj3/kTRLvdHbWHy7M6TrZXqyjXPJb0fksvxoQiWZxqd3y+hFMHytFk+ulcZTnXoF1VlSu3pq/jKqKV+o6TFWtspZpFmv3xWprsZ/a2w5/yamgkB1866kfyO2Gn+wWsmfG7u7aeYU7yt0H2ps50tySLNF6Ip0N/wGJvl52f1sfrxr2EY21exe5yYnfFf+NalkSTnWblbdPP9ZxjzYe/PUNR+oryR87ZbPi9tFMZvN9WsXytkiKuxW5i4t5uWM4qAN6m+/IvXtMHc152hUvnnhH3Vgk6w+pVDexIcb3fTj51Kfs0sx9fdz8n80lSmNTSgq10qUCjaV6Pvqe+xUOZpkBCbctZntHXYfnOWbIqMy8eUHY4x1RN7OSyYDtq7025sfCu5g73RGtWOC46L42SzuG4ckhpxgPq+MvatnNw6mMKp20VimnJJQnfkvfDWb24SxTK6+23ycLXdLPKJ6F9tvVpVL7Vdk1VWVYpT0fOftnc1Cc68vvCgzDGL8/EPc1chdH7jtnupFjqEfv+2MKTfP7cPw8u5h/DjGcQ3qKrj5MDYf/JDyfWwljL3Pve9e6Ebm0fr12nMlYu6E/cx4mrvO9qMnGt4ZE5FhM1MMPSTWSatVbsN2Jv0QO3aOfCamWEO2LZcoJShBoOqJaJW3fRpdYhKrvnDIcaQmb/4w7sY+F9ul4b/7beV0M5Z3lOxT23f0TeO68Zeyy3Hsdl42yGVuv5WXp74q3UPlU6XAbtyVD0UxJm6Y2/u1vtxHGn79mPgxFZs/rcb/8uHzy6xcpnETtqHUEHSHdgfMfNDsd4Fi3nKaDWJdh6AQiuM2lDYytv47Vrv525/u6LvfIvySR+9qNsVYucHfbrq7v/42/uOcV58+K7fvbze35Kvs/+Jfanr8ff2jDFupirnRx+5d+/B/NfJf9W9+IC16+9Hsfhy9/P7mz/6t3/wnSL2eN73dmJcmx38Ylv/+XlnXA6ru89N/0I0GX8nuY5SXl21T2/gUU/ESeX7/tCMCxm3222IWQRZ9R+klf5OzLh+qHJ4Xfuia1VOmXTL/I9xXKl5Wd7uYtx2AvgMRlWb3i1+2Gl3uWwAEaPJPO7/5VrvvG9PNbG52u+I3iH6jJr+UXr+tX7ZqN9V/uv+XcZQQNZf8HD7/ZJ6SGXT5PyB1rfDjr4EwXzx8L3+8/0mdpPxYvuv7YT43ru//fv68Tv1vUK12s2UI3edl5PXiZpX/ht+RYPt1BOZhbALRZw7Bb71gFxe7Rf4SGVVUWHfTGkA7NrE0Qzem6IC2V/U5pXlUs8ihMmY9qs0YLNjYm62K9D4mmxXKBcNw5rFsW7h5LqpHNQrbiZbB3N+V3zB7O7dcrIpsVHd9zbaoCz+EobPDx01dkqbNsFBwboXrmfNPiiGRK8u5L0qv2M1tT+GZF6pA+lj9yTtafwP6+mH3OIDImub9Wij0udN6zo+bksqSDa1b0hr9MMtuuXNIsWdjvxm+ttu2mId+ALJEOxsJOvsUY1EGouxD06oqVNMmJ9lyGOie17Gq1oCSKRaWN9TngVAPiUVGYxwq/oaeb6W09WY1On4gP2NbNCuFMQLcioXh0I8wC3lIpdmMdrscaKDU9QlsVbbDbrMSEpJdJMWoQBf6egRQVpl2JqVqCwV+myNEIo1h6Mc4ACqQ8a7/dFMNPkldckho5oaN+z58xTDMTKU+z9hjBzLOhNCFWJte2US89BZGyS1/+FMcBlVNpJ1CG1J2t1jG+qGnwtD9EysAYuPouafAPXThBghAJVkMGxM/dm2TzTx+NM8gk4mLVfrqTTm6blVb1XWiAhAd0xPP2uKuHNu46joITPmh/QegbJly1wIEQAS1tZ8BIPoNULmxI1XVtn0ZAICHtfuiAAiiT2OMjwUo+WwqxVB2WyUuGgDoUIX4tchtXEOI3cNnFoo7Vckg9R6kmjeGIADG0D63ANQQu/ru6+d7JhXZDDR6AFmBov9KAzOlUhIAaABQfhy/Sl7RTdhZF6UR36v2z2NryOrWfvmGNc5KgBBnFCyN6uvGDUWdeguwtfU339z4jmcF2JGCWBRxyEQECAAaAwgMsjufDM8X1RjEKUBQkFltXW3G4BxVt02VLY8eqrtMTORozLYyRJkJRChUHI0ZpAQ1NPlRxq0nIgNkzQQgjYZJLI2bESiKuU8qBIDZcDEUK44ZkaaHk6rE0hRhVsdobj/wY3TCBVG1fabnx/b3cDfCiE2tBHIxagWCaWrSZBo1BM1EurhdvJ/7W5QKQAHNhR1v5gAAgrKgBIh4qYUaZ52qjEylAkyklFMCaq0XnOb3Kve1prTYqSrPljOSRf/k+x5EiPNbqAqpQoHifkGkgHzyqpqRYFUBSGIiMqSaADaL5YJBhgjEWzRKEYpdr4fRado++zKQPA3LYsfo890Idk3wX4bB7oa4s8sf6Y+/VYUbVtnevNyY2/q2q4bFX24tsl+v7j7Q9xnb9p/1I1HikSR5Yg4GNM9dUSDO6pdBNd/Vzx1h1KZ6P7hZOwsDE2E9qLWzOM54Z/o6D99XkJ4Ak7AzrMnW22gHgLgMJQL2Q9dEVQwArYK6rMoZ2hIUXEIVXTBcd9Du/q+7P3bcbBsi+lqShA6ADABADUOVfbLdQp/KuUdlxYX4njRlCysvQwhNYxs3uspA2m/UmLx4/mjNaiDvv7kRzv7btLh3SXLji5wIKbcdFcW675tVRY6CjmZWajaa/Ho1+zgrsh8wu4/LSk0iqCfQTYW4Mk0T/DAuhZXKPnNZDFpmrbuAqrp7jqr0s7q9/9Rkjpss0Byp0FjYno0qC5E21uVx+GmNLYBiUZuh42agSlXnzx3PFzsYFwSAeqeaH6nyO1NIJV/t/KVyaewlx3ZblM8bo/eLmdXsnWmIio4aFlfHz++5eLJL1ZjJ1S+cYswIpEoEK6k0zI+kTIrO5tijxIAii3Q8jlVS3S0tOHR5TgQYwoxGmQ8Mox0QRgVxGjTWI/I8j88vKMqSKSePUVlJAWQoRYXTHHaIiFmzT8KqQIyI+bMqAFBu6GEUbEGDqDw/NU4MUJgkAJCSqpZPXz7UCb6vUDy7l2BNTnEMw2O5pVT4Lazf/J25qf4Hts9jUfvZ9uWbNjw+VDTslNn0fvQvW3/36zfV2sFC2r9gJijwRJpYQJqKTixAsy8+/mRSSSE+Bldvnqt/wTCD7Xrhm03JmapNSkogTgmRVP3Dh/yVuaBeK+RulYPsj8D0DwFmiIAmkIRQ9gB6IuYFGYFCB/HPgWCyDlDdMLrBAuO+DRCISd3oS8Pbu1WfuLTEUM2B5hsiyp+/Lm23sc98T2Qq2T4ttwPN03OQ3lNBZNxnWqvbzH4N/SYgB4CJCPePjrOChDmR90AGG7IvCYKRHrLVMaj2QlyViMrlDv5B+P2SBoCZ6fuXIROU/QgRIlKAjNHjyBUwAoFxt9snJVb4Yc/alKydxyImgDSYTWQyogDxrT4pIg5rCECJnXm62b5XKWKV7JOQ2BlgtpSlISnMtuBx2697JTKzKPoyqIzBV4tibkNkw1tTQFbJ3cAmAgHCRMUKGBQAqQFgCyZjiycnTEzAUJJAFARmbhqAhqiSNQ9xEAURv6ucyaLImROgpmBlO19l4sWcAAZAjjFnAjmFikoK6TAxYxiNEKAxpmaJ5NU0IPZ1yVDQhFcAgIib8GOf4W5oHLwmZI2GmWT0Nx493X5InLijL6LSuXVUKMBxCBxsjQRVN5gyzO+b3fMm+aAAqYqfUYwAVGeGFTRbgJkX6Z1jVSi4ntafVdOCDLKBMoDdkxIbaBiHXZ620wBUGAgTMTcqUwyJApoybVTBgCkAjMpHwka6dwuAYDF0YolM5Qj0kc3qxkKPNKCqOpQFV5WsfX4ohUAgR2ybftB5UbN39zZsvSqBqhEKUiDM0Cntajeq6mL7sMg7uwOSKcYJ32j0LpCSAmkEmDZWVXOtu70Ui8QCAFmVdi8CCJgACBRIUGYzdcWRSg9j2EHz+MwsfT6QbyKhrFkSckEKyUfKVtXxpSzJq4t98MA8dySqYyh39cRFDzUlIxQLTlqXJcahzGmCWHWJ0N/Uz0/4nVXOrCDmQFAFYIlUmbcMqBROngGyJKRBAQiIij8EGFECPACNGqEiUYr90g/DxMNUVbIqoJDTsSTmMUy7JGOOMMysWTSuVZHPRg9AdOsnrqYpnOafHjWbyiP1gwKURwCSbden7YGF7AcgPZuRt3WudKPkXAIEIPt+zH1XKYyzVE7AkXrFtK1QBRgCVdmN2oSkCYrDJJTYAwqlab77xyiZSNPGHvZAVODlNKDT3LpDHSdQqGZVhTdv6wE6tKQKIPvhuDCaBSh3jPAUAegAAJq7aINL8ooLKrFzT+hAUaExTdPQ4j7AFqFPK2IGJ6E95yAFRnKA9KoWKg+P1Y2dtuOwrIRco2gIUNDhISIeQjutycSCCGBVX9JpQDQ9rpqq4x4BAjLMRI7NxfxBda3zEoCJ3aGIqGSaEQnBy6kmssf33y7o9fO6sBEAYgagAlBBBNFx8S9+tPffLS1nmdcCyX25f8bE/bOsInFxW/B+3od9zWNTpelA614/gKpWuVUlHOargKqa4vxIAjAfUhzn4741vyUigWGo0neH2dDhHxFhhpQE5MR02FXI+6brZSLUY9u8eC/O7F5TEc1JKgB4bM3UsoqqPH0hgObOhWxzyESq6kZACUCM02nTkJXIeOox6Xb7+QtRLHz7eqdUZU2vZDCgIqy2CG9r5tAfdnOAAiq5SJJ7M9Jx7QBASSSRownaxwNKEBHJMArANHJoKYs+1rN0RhIAFBo+l9ZkAOnUshKN7uUr1l2JxgKbpVWF2AMLw/7UkipuxiYDk3SdllSg2NYm4c2Hsl4cdhXJ8XVRegAVph6mqjN+RqFKpQVoZMHFhwK8AkB/aDur4okmMVOPZwsbvPbh7RDMn2zztllC4i8eRKpGLAwkqyqbs9PDUzSb5PpZ3MQYjy0roRzP57r/s4yv9n9ih7IFQG7iopgYM5DdsH+GWHJyLmVV86RvR0/EW49XZAGQatI9OdBJukwSR161oApB2r2Zv6p8TSBV5SjCzOiUoOOE7fadTGcrDwjb3cTXDnTJRKY4DGCqTwAxydvtJwCxVEBjmrgDoAzS1PaHOoMgpZS2gI4zfdMCQJTeNgti4sPRz2c/qihlfVtVa/O6WZqgogKAICmrGlhV5S1wnGZK+wWMQLU46SYARHOXFu7QKwAzccOwfs2AoapUVWZq6EABZalgPjzeRSKk/gsRcRXePA+IgM6QwYELgmW/nuNBNkJVHfScWU9V6eaWzOsiVdR2CtxVglWmBYkCi/BmB1SpAGHuzyY7dbX0fKpGBUeo4niCj2xPVMlWHc7qwouCXU8TtftMTYrsghLb84rHrmZnx2L6SwA1MnWWT7JJUUYBzo+hKsBqVrk9n5go8Ne+/7ybVsCSJrCqUnIBr0ELkXaoXHx13hVc5TWdlYU0SSM7Mca6jPvDrCrJvhICJilUxQMKkHI9IFoyZatER2R1PgNRk9+eAVXhzFAFJSPHbUGZKUWh1ytgBsT4qgUBmaY6MBGwkDEkmsdtAABlmMrw4WxHBLV6UrDqWohMB1hC0RgA0ARARaQgtiBoZfdwSBSUEk7aGTJoAZWuAgCF1nfqeyaBUVVy9u0hUPXL2u6HepiAKmUzawBoCifpLNpUBZ1TMQGqS5teSyxVldH7bv/Fsv2P+mgVWQDLtpaZ6Yzt2+QsGbfsZ1X8+ISkAFtXLntDkKLsRGGRqZhVRLVuAVHiRVePkKZ4Dllt7QmQgdTOdvutNYU2HYGS9XvRYjI0KxEAuXvE5eeBB3uc0EEecNN7PmCw4wJsi72Ofj7bkIeyac+XgAmy2+R9NbJDs0ydqCaTmllTF1LwatMsbsmoKvRdtVhsJa8FoPDNUp5UNH3kcdsHGd1qPq+MLfKNSs75vqr6bGEW8zELFzmpchYUtURf1KGn2zKt51l0vptohMTZBEmJRFJwFzqDSF5sKO23U6eTlTJSx2/gBVLOy+fK5v78BIhoHuZxyOc1VZR2WO+xDphk8NaqckVBnFXOATNCWZdGRHU00NChMkAuSMMootGoITTOxgQJmVQ5q7KkmNlJ0QcIsWYyKqEFXIRzbAw0+WFeiOaRphlJpIqQEpOKSEuXJ0BnxeHvw4ZrjuvlhcDMWZLQGPg1F1TeCtxryaCSOCfdsylb9P9QhwJEKx+fYFuT05xTqJ30KsluxfabvX6bn1pJqjBfPWnyUGx2jsoVMv41mXn3TArArzvzZFXM/BslFWCISkpegI1SFVS0yLrX8cZOMUivWVjoAgeoKvsjADsWUjlcoAOR3KOHns+VFLDlU23foCOVJsbDUbEYfzH5zwDDAJ6KgEnL7wCoRHDqti2mDcttC4iQiNk4UQCahYf1ZH60ut8hXgMJSBsAnKtJ+d+rTTqwQocDAReDAkOKYMm8eAvZJnj3tlDALl6ARqjqLAa8mStRbY9SkPZ6GywcqPAASJgIGQQUyRAoHqEdAHBZSI4HfkkgAojAThBlX/EgikmkMSAQCgMiJlIQuW9nh873/86Y3Z3ut8pVALoOnEWG+avt2z/R4+2H2NDSGTrV2Rcvi6mMzssd40RDepBNSDelYzS3C8uqRJRS3H0sgMMmArYiEtVMJe1PIU3jy1mkl3rfJO2fyDk9OzvZSSiTQqCUcw5NP43qOIggCrInxQzIXkVFOJ9UZ5qwdxKsjrt5+CMrSo1v0YGIrF7CAbQfAW2UbSdn66FAjEFvCq5nN8VQNMSqUIVoRbtzdY6TIue0qSQd6HVqJotomJ1DYQDIKc/juFcNLPYyOCdeWD2vB/icQj7sdQx73paVyt2Js+85lKR4koHHH3OKniYb6ZFmVCXFyUhzptJI8tsEfc1bNPqHEDasLBgTW9FJxw0tvzpuNqvEyCZuT1yIAKggOIlvzqCkUCNMHQ/Y29ZEyGP55mST5nGz52HUVgcArRKezysBAOU0+kvZmLXLIDnS5H4F6GU4Vt2Tl+S0zW8biCni9728KCl2MmMRIiQl2byypnGplGM797bY68lHzCl5HsPrVjXnYOggq3Ry8EJF9eUtE7MiOGBT9bJvO0vqZ2ftHSagz4dJniaX42aCjOegT1X6M6vFsbw401qOY439CGUycBUxCSkYPHuNmFmhAmujaY4winSCI86Xy/JIm8YakCoPoHP+Q0QZipenc04FUFZyR8Md+TwNl4n4aMw9MjJVHY9Fhx+scXf2OFfa/6EqOg2Q9lZKAMRGisluCSKiPW/RHKHIOSFWySoLaQy5e6VGoAeQlQfeLs1hExUTuA8bvcFxWVQUmiVvpzOiJwOGRP28U7w+gciSj2aMIu6tyKJcpWOVA+rJWeKkNh1/IIgCB6vykQmr5LSvtocYCkBUG9HTo7RvjKbHCLpZWVUohZHa12dVAUgOLVH7egJZ1Jdyhq4FmAx1ONgNjgqKormAbKoSnw5fiPYmWCFcsYepikk4o3VShaq8YVf7uodleyVLpEDaL4FOqqOCyzLtoTgmn7OmsWtXl23mVLy1MkFEyeYLk6DqUe89nVZ9g0IPpUczhm/28pQBvVwBBS6fp+M17PO+pvP3tifVXXdkV3ubFdHezaQqjGxVFSTj6N88TQCR0AXkEhCdaxzThiveLtQ0gvHKXhG7o5fn4AoSaLwwaAKg08E8ulyIq/O+9hKDL90qpKrl6dtptZLdC5+aaNL8uahvLw1atlw+v0bXANiY4tj/0Q3AxNM9JZyzYEIqZ8DbBty3xy9dNz3AbOpa908fG2CS7w+FR/nOxhZ82O8DZyNjzojtIDiI+MAkz340pjjiXRKext/cvy/w9kNsV/qWCFXJlU2z/3IsBRarww4dCrMozc0lEZ8WlQ4cKitg3f7LWat78+ehcKJcnexB++Go6oRyV3R67jSAowPvjDfY7Z5d9J5YhQAqKj7DIYeKpO7CTAVCluatF4uIULg3q8Js6tf2uOn3fKUraA6XpewudQEFuXTY1xMUvPBATCOhi1UhooNBjyoLVlUoW87xguUQZMDbBSBoThdMkIiGA2s6PWCMG/VVrf1g354rKKBymgEd6z+fz+Hs19fyBlDN48VSA4ry4gyfUWDwwsQAMUFWdDFZoD9zvx17F3Tjm3pEZNfp1ein0zq+rQZmc3NS7o8/cHHGhg+QiMko3pgJiED7KehpbWiPd96OqzyqLYexndleuWmEQQRiSPv2UWC6hmtfN8tMNLvoiYjdweXrDtyQjbWvtTaFgsicCPf4A3Fh8fZDbEvCGxogYnO5VUTmSikwxlfEqoA986swsZUMiCjP+A28x2SE06rm2MtZObmF7i6N+LUezmudTB3GBFWlJp4dTSWQiqS3iw14yWGy678ZRDyIvyO5ZxHFBWvKiksjieRM27c1o57A6Ro1782TbGYlrn2I7bkTAAo2+RIIAUd0ImOqyFgmAaRuTgoKYc+xX7NQIsCohnDtDMvU5yvRoDIdC6K9jWMS+ZdOtKyaL8QYAXymNVlmBcgY7cpXI5jCHkzWXX7ltWUmDsMFbGIKB20mqxlixhQrPJzsMQfW+xazKQBlU7/lK/vfdB93ckJERAf0dQQNSgR5SwHKAFjeUAuBMJsImOoRVnTSW8364gjknBWUX6N0EaSK3i6AZBmOCjPytBkpQ+T88EzrI3l9OdHzGR4/OeeT/D78mvLhsNOZz/FMwzp9Uk4Rb5loyikc+ho086F/4TfrBIjkV/a1qaqIThbU84+oujMkpfuqSpfwSpXq02aeSi/FHVTEHdqj89KJ6SsdS1WvqBJQUdELbiFKe7JUxaSFExN0b8g6wkhAVQCtXj9P0NRd2G+hWleXZXKICzgDyURcXqATALm5nMF5Y+cDoNd8ERMivHyI3m4/ACYgHVgHweYMaE7q06T4nA8pZcVbNTUl9G8NQkB844GcqsY8HDScI5JFzmlzMaucjFwiuZzzBVUgJVIb93zx1MA1XSrnKwcjpRRPA5qAEIjIvhaj01qoAG/GRUBVX7QqIu0FahWo+Cv7gupUeHYGLnGAXFMxoXpFCKmkaz2RvZAC/ErxnmAO7Q155w0Ce9vem3Ylw19ui8g10ahcXI5Kcs5HxnzYNcnJX0oBydm9gYEKlRQvCVteE+9xVFfo4lVMtjJkYhZIr213AFQv+RJyTuMlChJ9C5lxUmDfVM3pFIqxF+cQvYC8AFTEX4hMEYmX7cqV/ieG/XYO8oomdI8JVKW+Ml26hFwKbrS4ZNgXhoNpu64s4VsgsBdkTK+tCQCI7fkBPKhIXOJKb1cWW1+zxpMJ4dAx7ePBICnF18SuBIjIpZkli2S8hQHIck0MS5aqfrszeo1Youg+4um8QwGdGxUPOAuMC3oXfYuEpwmcuwUmipQzbKK0R4Wak7zeLNK9GHv7UVGq+MrBuhLoKqLjiQseBOxZcBuwxwIGgLts4a1v9DhEOt/N6bgeieLYDxQor9DFqQ4R8z4Uuf9Sqp7oihRkY7oC+WNKaXex3ekaD0wxDDjx8SMSfP30BBpT1pPx7DCMlE56Ex3q5hgT9HByD2pCzq+WampBUureCBydZOMBXSqmgIKccv1KCilBk2ThiwWMKdGlmSvnfIUvXFWaRN9iKwCSU+wuPeGSL/UGSXHERSxBPmmdJ9UpiVwSQDhbKwLtryNmzRnnB0sBxJiqfUTX2aCC+uYCCeYUzQXoyInSJWvPMQ6vChRADNpeAiGRk4JzbEeiXBrPEMKZFD3oTjmej2nfgknp4EOBkk4LkLO0Ax28w4dOU/CL4W30YAxIdKG45JwuIY8kvRSYuLSnAchRB3p1WEiBI5A77y4H9hcWMaTzBTjQQIzJv+WWiMEeg3oJykQAifIZtz7qXcFTL8qlOSNE8tGmC+EgchWLazqPqNyXySG2gg54fCrkgypy7E1SPADpM10o+09XRd5l9xJ9e1k1hHBilJNFSLPXcESyJ9tLDo9JIa+EXt75Xi9O61V+aclU/QUTlOkIHpGbEilywpAPZcdbB3l/T4b01eGk+XCxr0p8GWyewjBeYQLcFyev+8QEUxrSG2WMAGPMFcmkKRb8tlUmuoIErbPXbNXXQPspfhhn553NZMc8txNz2dzoyTK8/xhXXeoNTMRvSIMA6FksEU1snt2sdocmj+qbKeo3TJgAWX5rNhfhq9O9+jcfa119WUpvyVUVgHHNm0oAmM3hZOl0MlRhXDW/RIJs7OW6mnL2zYUuAXbz83FPHTg3XloqiTlfSKF6vlxcwaEHJPt2VNfuAdEFAUH42o2h1x5PnRZBmfchRK9rXlE71Lg3pUoAGz6ZJ2QiXHLVXd4HG5yZLlSKi3NF7m2jeyTm3tacrtleagjE1ZsCwBljq5Ol8sxfcMJmB7KgI/98PTfgbWfMF0utgDV8InWdbruqLdzhdJ6OARPeSlyCYeRrNxuuuHYB5EstnQlvGKYCYFvmS28DzmL9J6y7H93FCCYHz1uyYL4yLGvPBZ7dH68ryhXA/HYBFK9vNx4mIKBLq7aq0KVvEaDX1iMFkPUUjXaGeSS+DvOFkorqJQ6Z+OWFaLi2KcRnq0pgEQBTmo6LNq9w9ok+rxDg1QCPa6Wi11iI5HitUX2rdk2xLdcsfVe3UC9nQHQ6GER0OA5yoeH+UwYNUHPJcOWqOpzzFSisemUFkugr2L5X9q6uq4hcGZWebcvxD8nholBx1r92vMdkFxQw6U5XepIU6qsUcFHImodLfqkib8weOJhvz5VRYOIs9LoeQSS93qy9XpiPkzzD1Dmd/JAHkCnpLMIl8iRo2ZSviGUPUvmKazjH9SW1nCPhs8nx7Mhdpn8UEMl6jbLOSOUY5kY4Gf8PhQoulS7MR2cGgbORsJ2olc6fJ3ta1noKkBA1s9nrHVAAqu61w1ABIlNdwjs+e/jUP6k/4r6zXYmvxDgpAHfJhglgc5RNOJ59Q4gHe/8ZcKMDwDpbcAVCet07QGyK43flicmkYcjDGcM+dlle7hSbenlRSGyPS0XnpRc1AXp1qWH627+SbdPiA2z4lTI1bSZdc3ecW/pObUBf2+r3PtWz1SdWZUC3n7ZXsLxI8+YeEwHEV5RcJh3Ph7+fqXEXIwUZ+2pHAACGzaUTDSC61OdBfHG56p8Q5MwnJ9TRQfOqotLkJtBySYuL51UkvDF9TEk2LlUBvi4yubiEgkyXZqZ9VomLVq81yswn2XjJ+F/3f9qBE3UTn8tWhgVgmwYvVzaL20scc1VisnHXBFYO18DIZSTDq8Cds/5fC6eDbDyZM85ZyXXUfU2Mv1pW1qwAW/sGcRAAw2/nSnvP0kWzxrqLmlCJ7ZUQp7d6EwF448Q/MdQ3N2fpQMLXdvxiWc0bLzYB+7jsU8nkF2Bmes2vFICxl4ZOsHl9sAkgwFhzSY1Epnx9zRpEh0jl11XNKaRx6n2a5ZEH0iQC9sqaTtLxfBhvIiLpMNYKrxaLAOVXnHWvDRLRGw1lL4XeIhawcVdiaa6ZTkB8RhcnKcxGzgr3gJPYXMqGk478aq7mcF2AXhXqWc2DaGRz/rBCAXOuo+qeIRFAb2zVCrB5bf/eSyGguKhqzBWBx68o8HA52Fh3GdLG/Epi7n97vax7yU78Fp5NfV0TDZfqMMDEdLzNf7QH0D4H3aveCDjX0Q+WAn2FgyaH0oXmrQCITXmiSD1u68TwX53YQ8zv8aTvS/lAbXQ6FxMTe9MEXdH9wcTuopSY7IHjEJglA5jyE76dAAjHazh7XAGAuHytzU4kfOmZAx1J+JwPMNFrZeYVVj5M7PjtFbw9HoyrUv8SHeHttAC8lhbKh4Cza/k7QG+s2vstuAyBB/BaDEyg9Fxg0HFV3wxeAZCqvBKYE3fQ46W/KTj0sFZXDKtHbeiVlNBX3pr98I8qJintHbX8TwExuvAWEDRey3ikV9w1RBfwGgD0lTq9Z2jX1NmzfdZTA9floKb9lZUzLYGmvFGvpnA8a/teeVoCYy/9dSCifOHIJCJzqY9f1e8uQwKnzxXnKL2C6KepXvI7wmTEeLsH142qXLxGYpMr6ExbAU+kRcjXbCfXwi7YFPl0po9H9JIoQOArqPfqUjERXTuErznLIS7wCuhjOpcCJ1p6sywK6BlZE8AiChDxFcyDa7anLNd8e3rNIqTQi9wygOqFqfVInBdV3xiPCFPUw5WR0mssTQAgqm8srXTo69gFH55/a3yiq0M6jvbwx5WNP694xXhFhEsLOl0J9QWgepXdyBUeeGLYZyrCgcLPOgKpnD0vRyD0dgcVhGvu9evWR3rDag6Y4erJuJRXeLMv5w2//S5yzVC4z1Z47P9U+gotXBI1H4jsSufyRjRN9a4wpuuPX7NbTCN8E/cCTHFqF6sl8laOE/6JmNCjRewcN0xZus+GpoBmlXxWjVV0avTyGgtfM+joBYydRnaJBPXKCZnGeCWgDNfo+u3zNB26q8RyQrevHs+vUBhBoSLnp23aTVG5CDYH4Zq3QEVfs/xJjp9ty/H+2pW92svoK5jtmu3jwq+gR7ZznQjelhBOW3jAzvo6Mn2yZsqrZKyn8V84gfZVL+Ddee+1Of6yX0A6mCv2GOaaE+aaNnXBGKer0VN073kpQHwZuEREbOj1Zh1I/4Ap9+suco1eJfkr4UyvmOhRVTgXg+bslz3OO+OMqpfxFdNYrvX16vsZ7b2+xPKmi7PqFynejt3t/53MblfjHEG2qq5Zq68Lx+On84cOziUDAcd45EvF8ZoHBsAVHyD0KrxUkbN0loePqLxlgqfRTH9OQCjGcAXKq2ou35Lra4ffCVVf9ILX0d5Hm72eo/4jSco1MP1PCBHVyxUTyZfVReRNch4FoJLP2NDkGEkxXHE3Rd/vQnpdBlY5Rk2cX8s803UO/1XV9HpWe+Hk3lYGrkuBt5s9+QTOpnQawMmDdE54esUNh8nltj+P063AlPA6WYcCU5Taa7s8KUTOvNtnEzlzjen+v0pk98ruWdMi+c1i6z7/wJXI9ivf9SxVwdkvR7rU1+f8QuQoiJUOyRYw2QOcddUVert62F6lcj3N6izM9qy2uZyHiLyWeIr9AlzRO67a2tPpuB4fuR6UenHvdRrAMYKaFKwCAhtjXq3b1PrZaT+ijOsS+1wOTkHPkwHwoAucLcrFAgCAXtVwNMs139o1RpzziQecHYG3rep0YePM4sAK6Gsz1Tl2futxm9bgkjDOOY09VLy8sjWh3tNmHa2jInIZIYOcz++d0qunLgZwGsJxfeUCSRGQczq/zHrwPtGVKLOrqFskX3rGzlmAO15BFTmt9QmnvroucIYjrhzBV0fgQLaqclIbjktxFjVxZlg5i9t4K5L3PHDPA1RyvNwAyVdFy7UbfmdkdZqg5Hy8NqfH2C45u4lzgEm4euUI06qc1BsCHdbqEvZdUZxzvnawzvO9YH9VK2e+AtDTtfhXvWr7OJtq6g5P5XSE0nr67/lpPeNh+RoTfBPCPo0/8zGA9kyvFznA8lNckMgpMp6PORhzHA8wQs0+VDbG9JbfAfDDZf4GSD4L0Tl2dVgrAk7JBc77P6lwcgaEzoj12sGSnK6wm5zSCfoePtMl2f1jh4fOrw1OVt+9xMEBLuS9gdb7M7/IseEwnu5bHM27Kmcs79j+4RKCAjim3VbhM8XrOGQ94ISz4zpd/3/7eZsaRvdMNFxi5BQv8y/gPB1hPEUITLSzXyXWDCAP49vNJuCa1kKSwnBRirO9prnBdNxzSvl8o6YuZZ/FB8B0s9hMVzfNNR3/Gg4AnUxq59nlL+X4OTo5JjDDnodN+yA8GX2CXNuA4iyq+MiDr1vvzqlZ999zHA+QhXB0EUg+4hDXEPbut5TCFSYU3oYiKCBk3HED34C+sy/7v6547Q/p86fR7KObnHvrGFHgzA98AtpJ6ZSx58QMzm3th8GcOeL1UAKc2br3wUIMaIqXkVdXkNjUPh3bOF+zEzw6lOYz0HiS03FYn8nEPeEUpztrZz2dbs3tZQQpIGfpWk5rbmzJIEfAyZmibI7x12cmGOLDYocIAOEYwXf+IQBsi0vClKuKHxl7kAJnLzQ5D5Q8fly1OEgcKvcWWmMvXGB4HWBxYiB8xYXAUzDLFMV75JxKbA8RzifPHp9Q92QaKqprch2Y7gtcDOuoY9P5qp17Z0+YlszisrSa3RwAtiks7+Mkr5qq/4lBFfx2wALVflI9zjL9sbkICFOAiI4SeSAAQ4tJn8ebmie+cRj/XnIcd+MN0L5ER2zwdqx02FcCctj/XdjzGJ/Tsl5Te1T8GW9/rUG8ye9+4TGdZnWyCR5Siu7l+GVX170lx05OUzugVnpT9Y2VaA97D/4Osji4x8+NDCcx+rb76bC+CQudCo87hOKoA5+zRj7t5km68vGhfC0A+tVcDv2fQ9Ezu/1Vv0KKw+tQXQZUJR1hL6XJL0DXbglf2ZVpFCe6Pmb3PZ/qMdsmnTvdj6YZPrPfnmOE12Jkaviqrfxw6w44e/0CW3cuq6b/5zCeyW9gn3NzfxULgHYHnzCdIl1PfuaL2LfJ1n0Wly0HajxnY7vjGxlE9sn1CZidNLhTMMv5UpxSopwlhznr+rDWcoDCAE5Ql/fs5oBBDsaji1hfBfNZ9KSyMk1kdahpj2RlLxZg6ut4v+zYzKuxHn/KEw5RQEFnF0uP0p1P7w7QPFy/T3fs9di0JH/sbnbo9sKeQABcM7+CJc8hi+o+4izqURc53dw4p4Bj5j8RpMN3PoGDM3Z1SF0KyCkxikaWg0ZxgqonoPf21ti+v9OSTBNRwNgzfHa0Ykg6veTmSAXGnicmOfA2Pqkd2uyBUBrHo971Kh/Qpd6XUzpT/U/9narOqn3hKyccHdwlZ9tM02kiANadMrMcb8Wdrwod5D4V5dFdwycXhD1qe+f49ASK3FHQ65kTSHky26aBTvDFHvLo5pyOYb1HbiOTkeENEj33AAxHJHjg16SY3sGixwFMFc6p7U0eJuIMAlw8le2p4iwe7sy4dhYBfQKdfPIu6/F1O0fnICmCZQIIcpZ0Lo2HyWZ/vKNLZ9ncSY9o53TNOR95M9eHAbItmiMs2l/O2mOh87FO0zo7DlNBBvQsJvF0KWx/y/acQQKGD4LoLAiKja2xl9Grm+MA2RyPQ7N/RyTNV0eyOklpOkVOnZBiVpiD8m7m+/RT52qLvTm8/0HOoxaO1Hxxv4qgx3g0AoDicBrOlSHBPoke67Q2IICbw9HUo5VDT+dgH8ugqoA9tE/Mx4uTXNdTlJgpTvh+AhdEgDkJhD0zUYCMZZ2ypdFEYQrQ3rmrOEcPpPmY8J6O1Hqmy1A1LR6A6Q01+9dTXcsr5/jAaHKe2KkS3JSHVbGPmznR5hl2ntZiYvIW0IOdSQGKnvWQU/Pwsc3hZ3OKFd6zcwJc4dweoWjoT/t7dITLugcAAzDYnSQ6nUj0yET3BmQCDrnFz2TJ+TdwZQgAA/l4/18Rd4ID8ppadbQ3yhIAzTliWlUVZUwnKoZwACdoZlbIZIJxxxQm4ejd3hMr6ZnohmUmaOlaxXlgkeyzDhIQBADJ67CLo8kSB4MKKQ6RWUqv9I6jGHv1OQhQDTocxNP0eJLJwU80pUmz0xthpzev0N5WFKzsHwi0OzQvY7aUFBpHOZIdHdX9GMYTkzoMYrrM6MM028NU9rlxXgeG6pTKayriQ6IfInOQCNrng2lwv1bT15OqdeKWHTCJEslnmqsCU8rsGP3xsSOkyfu8aQpgnMxveX+PZi9RWmIwAdpvj7kmTuDjWi42SIrxIMpOd/v1zH57gH9HxwztR6X7G/DHGCGq6v38IXmvSRJoOds/deYcnrrKCuw58CSQjtfz904cIkDP7vwTvUJeAKDM7nACyNAUH8DlrLykOmGLwy6cwNO1RFBHbVCBU4S2iuRT6Psph9lJ3dx0+wUknlJjEwCdyEuPBxXAWVgNO1ceycoVBBQMMJRob2M7akQ0GfWmUEDTEEwFQCXRgTmW5ZT4gd0p0wEbt2+kOEkBPr2pwZxHwBy62kuBaa2OrHf/mvKJy5+AxJnB4bjA1hXTcdPD+QL29oxprfKBmbJz5YHdp2FUTAl52RzBruFjHNEE2lQBw1lBzhBNJilSVaDYx/y5ojjCfnKH+whn0admdmCS1rojOiB7nBKf6NIyAVAi3uPbidgwrchR8AHAwuIQJq6nM3SGnw9yjA650xV88Hwo9v6wNAljc4g9cQzF9D5yU2DPKjX6fWDwZJCZCEwiTwIPp8ze2ct+0H48csa0HfdT2We0nJQzwV7wpugJ+5G52cQrp1Dd/YTsjKd9fHVJes8VAaQYTsXHz5HJaD4mHT6jpIkasy2AEGMGQIZATb1vWnM8pOObDLw6sasIKBEpOfEc95FyZ70fgEw4M6BPVusJcSRMh+lMZZNzhjnsa+7DmgkAwu4kCM9MB8eZ5oO3gIBir/Ygnzknj6xdRdIhqk8dAUhhWkY9MPx9zv4pCQumqP2i4D3Iy/moTovsLVXEp3TXx9i+w00oBWBm53dHFJOxT09AyxyhIu+lMxGdWc+oKPcQ6Px2Sl1izx6Pxh+lalHtlyrnfGmtz0T2cOtJxQEYBWjq6YJcBtTwHhaxdRaThNCmIiB0CnbFDLQnhpwn+5RqPmbAuFkc5hZD1COZHn3eovn19YQjGew/ez+rKu/fugIAWlpMPikic9Tni8loawjGWjnsMBX7x9hMiulE9QSYgicD+F4+SoiYpEBZ1YQpkJAmeao0Qdm92JwMMpmgRLCqlgiEdkqmqyKmuAxRKsrjSOPEokgBNuXhraznzs1juhIt9m8/JuToDwuEjeLgiTzt5iAAMhSwJ3U4PV/LRVBOMFYBYhzy3063J5MC1hxvI+7TcZMCRO5gQ5QEYFY9gWR67QIrlOYlE7Huz9Veih0lYlkWx6W/LU/jmf7LQHF3kA1n12EN752jem6/bRoHQDNIJR0ThS5rAARRmNNN+fPb9UekhSS8ZwRnmfS1rPfEonqKPLLlXp7u/0cAyOU82RBVVdwBkMvIUyjdGQus60MoruGj8HZltf+TD0hLgWYy5hgcdUgAdi/yLbio5+eDAspJoT0YJRkC2HpWgY0rD2nYpyM0r7C/OktT1ZSnubNhi31w/Jw6BTUV7e8osiWAzi82Hm6OijoDxF4BYxzvrdTVqp52juxkCGMAziQAxMBeRVQBvGsmEj4ZrxRIxQyYRnYSeLxnPBl8loVuu82gqckTPhY4IFEh0DwxHHsYBVimS557KigWDQBT8h70kgMIQgTSMShEVHRK2FAtS0x7KqJgQlFgb4DlikGYlEJVRcV5HyM0PaoCYAoLUQXMlHJo4pJmGjHY2FIxObVjOoQK2MmIYQkIMm22AdjwJNEI4MYoyhogY49XqQQM+OAsJHsPmpcAJt9pVEA16z5+YLLPGtKJBe4RZggKhWQgi3iaWHmgag8GYkoQpRgArguiaQFTjAfvIhfldOM0+mF72JYgBGA+KdVuT4HVOOwXQHKOBNh8OF24n+3PMbghwJisAIVMBDLHvG/s88EqQnkPnyh7AVIfErEpanKEApgU01PERRYAbZo5kGXVfTxYVsAuywPd9V1LChUC5nWppCkTcgx+EohmVriKMOwyeAy63xXVav86wBBPwSxCy8102yueXvxNYvavC4khDwCMALASsbdMEnOGDgIYsjaBSDR57QAGlR2Qbdyrs5MTSgDUyzEkkCVoTlGgSSOwuukeYRb9cJ6DZHUra2jngDiqx+TXT4vSPQMmK8BGQUqc0X8NpIg62QOgtvSSB43OBgdAiM3eok+bw+1xZHUMdoaAYCxDUQAppcM79IQPr1GMfkwAzwoABhET/pUpSMgykFyZQeQYOWoBSDYWqBYWKKoaB9YGAqicZUDrAqqSosbBA2gaC+SOCarKAOoGxM5ZTMk7pkywTEBZVQVgl3NCXdUWCioIH373AwBrFaaoFoCp5wZp+WEWMftw64rFvCLS2wbQd7/9loUIQL9rBcJZgbpMGZQ8IFmsTjwpTknIGZAspJCYCbi5WwFkC4KPmfbUGrcjTVnVtZuILac5xt4Tcj8cBMheRpkGcEMCyLjDbld1BfCyUIhgDmCIhh0lEGY1QMawAgmAFs4AmicxKsC8YkVRVwSaO+xt5WFiqI4AZpNNVRYZMggBjWOedKOkM0CjgrBqGEAAICLDHuPNZ+XBCTPFQ7EF4KMDCmOBkLLuO1muqgLVzBTgWeUIbAwirCYYJCipZICJDcNKMkC1nKYegGrC88SQ6cXy0gHFLXKegvO87vnzxAVDtEtAfAJySgKk2AMxq0A3PZDDuAV0sxXilKA0tKJeVEXJZAVyxuQY4YV5IZ0u2QksaVGNHnU9HrwZZa2WFEpqLGeAoJy5sQyIE50MjXAzs9OmSgpiGqFkrCJhzh1/P9v+InVBmpOQQaXiAVPpsFNlMjLZkrUaFb1tBdhnGSYgjhlo5zEobmwKmvIxadRzGACGB/rdjhQjADzIyIIMIARYTLYEsxleSI3sNEenNhowKfo+WJsCUMysU0xvWBgsdHJ07PPVkAJsYSfORYYJ0BECCQUBcRsPfoOQofgUU0IYFdAw+VvWhqTjAKOUIiTFsM9LMDz7FqAoZn+9L0CBp00G4KYrvQnT2/X8SAwkGMDj6B3etSOAQgKG6WYHmYRo5v0IUmAIDBAsElJRGcDZBLQ6gpZjZkH/nCdG7kiPb4nPoqQxAfA+lgPAyHh0ZgDgkgpxSTqlV5c4AugUMK4CILtAWhWaIQApwsGMoxiNRzauzNn78eAH9q7sFC25ACJ3iH2p6jYBtQSkEEj3ALjXTNpaDzKngC7n0CP3GfD+eDyMlQQQCfq2cofXE46l42xZgD/etSYhRwKiIUsmARoReR9VqMo2wmQcAjVtBjiErQLMWeSYPpWYmSZ/zYT6yyoq1B8un9CymqKg4t4lG7cpn4deUa0ZvIphv/gTCfYyAs7YqHmKqWRVYJlCRsUDdNSOeApN6OaOprT003uWmDKQ15QAG4G6NgqdvNkje4UKKbLvRuwiKbBohn0KjclyMPGD1O7fTRMFBzKUoAS4uYGZgpHJAGpSUJi6OQS2e09AoAaTM9YVk3lQABhnC2IL1XMPwNCnvbc1xYi9uVQHAJry0TtczYECmYFxBFDObjSXFQNollaBWQHM6uZ2byBRVxKQQCgLHib1CVpaB/Q9QD9+twISEwFcLS1IgejNpDcp8BUAoQgZD8WQAPUAqEYnSLuENL2Px2kGtouSNIcMxJgAUBBMWSs0MAs8B5MNFyFi4zROls0wvTXaIgGbEQCzgnJOBz+Hux82yGOaXrKigFiWkNwsTGYYiwD086YFFnUPFI0JMIZ7QMVFtbeZJ+9bUagBsDBrQNiVY1X2SZu6miyRpH5IlogU47PZAXtM5SImfirRHzzhkpNM7Cj71AOT1WFbJp3iZHbj8c0ts9teATjTx6fFkJFFE6A9u6BS9ZpSIgXPZQu7rD8DZBWqOIYEyuCxz4gxfXrLgpzbvXnFFpZ0cre31gBhTaTEPGJCBxJSJrUiMEYNJqjKZRFEAynQpfFAbD4Si6kAvrm9ASZwf/Ouoem16OTbI7vpM2FSZ/t2A8AnAFXtAKodsOkPtnwUlgEwQMoS9owJ7+9rCyUimhQvWW+BatYQYImBdEo5vywTgMYp8v42Y0pASAfPQkp6UJHMRBNZkSZuUTuFhAGTMiaTSY0UkLIQhXBBNMHgcu4MyEdLKQK8vx9JAqRKeiAwYMs6A8ZExc1yCANMKd6U7v3nqbLaQjApAB+XRwPyS5EwHQRz0wx/BJABKjmMwHh+7Y80hrHpizqGDokmEkTGGgCgSqpsT+9nFeehICXPGZhSkhdlxESC7a4HQE5J9bPYBC4ixkF3APoCwFocUDlVRAdSjCADP5aWKQMSJWOviN+ZgaaXz0xkklUBkjACuU1QZxVAhRyBbgfASUBTZVLAJQUMSImY4xnDJ00dALKHV+aSycBqWYYhdMrYG+tNRZ3OpAcwZsXhepXJmH8bHxUwxaBVXWDflW8AmHt9yv3j87RqgLGkGUaBNKYNgLKGR8zQibM8bzc2Mucyw0TDSgYQ7xOA0gEIuShIxABx6IA9E59cEJNFKQOccga9nwsIOWOfCL9aWICTB1STx/520V641qRcOIOcMgBNquien4KokgHq5fc1kYwBsAUAahgUwxgxBdP5SIZoUY6AQQDw8AKgqhjQwmQU737nAOl6gmjcZ8mulzdLwJRtAGhYg4raAepsAoRhKufM/r1LSgZ7h0A/ZAGVDpjffbAAUADNzY2bFoCtLYFylQWmNAGT4ik5E0DOMb9/tyBYNnTUECoC14XP4LmL2HXeYDKorG4XFjAuA5CYwXZGCs8OMHVN4OkFuTkBDjlDYzhc89qzi8oAlWFGOZ8RgAzB7V/8FsqGGES8wBTAyzc3Mzvd/Hc3H2rkzKyaQ+Apz0sYEyYlmT4skkJjAExROwBWgTEfDG2cxQLBKyMlrfYJnVXVAmOXVFgCIbEISJMHSIMitWkGcFMrbm+XAExtAS7qDabwzWEMESJtAOrFEiDJUOtcgWkzwhhEMWZAhnYDwICAl44Ak4Mg+WCAKaIjx4zk0zEmBwVBsxKhH6LCipag8qbSiGYxRYhw2VSY3D9qilme1mKXrCHAJaATu48vZeQOyH0FIHAJoQUDrlmCYCkqfJYMxIwDJJhAYilK6fEFWMxqAWTIhLELM8KDt4oshqBsQVhVCsSHCDRNPQJa1ITkmr1toiqruQGqQslYMkAQAWpna6CqFZi5VMM4e4g8mt+UCnKF5smav6ojo7wlqgu3KDiJEor7uzkI6koirpoKmDvgfllnTAETVWGaSUqaqi4ByCCwjRFmkqPdT5lBU3zAHtkePEOOQAWosqCysAKYulKUdtiCCs6g+/uFAqlwQHNM22vdpGIEwDTN3mzLZVWBqLkhnX9cMRCTAk1dZKDva4Kb3VmSHQAumhVAtixJA81mfPfuljBf3Sh8v9sI27qyTKpg5ywU8NCiMKykOwEwZcZ2UWGsjKQwWcnacv8yi9STK3vtQbptRwGyNK22ZQRImTM3zbyJ08tITVkNiVgIBDJx2otyQb9mN0MHY11hRI1kRTIWwEwiJGfnlQuMkC+2ZzEV2hgxNJ3moBg8K1AaDyTRCFBjByRYhuaQkJIEYGfo4Exs02hAGp/Bu4KAmcuTc9T3fTsZf5Ha55/yXsEIfZ7MJLDjOk16WQRXDaaI5+3zGMHvGgVJJgV5IcznDgyaLSshJpG8XAFxm29WWjSVyvRiPG57MsKuQsy04Nz3HnDzUoGgNeDmhgAyWVmyJ8yWiMKrmqFg14rmDOQ0PDGGzASSpATJUYE8bIhNBLZP2wAgJQuUOvZSzIqcou+ADIljNiWzKUvA5jDoFA1ZlaWLChggoZwRaF7Biud3kxWGgh9a4JtvKgfjqCDNBDSVTYCEkRCjWynNnBra7mKUyWVQwo/wm2AgMDOGFGXlXjZ+xexcnDLTaOq9gmIuHXJWUEjZQNAPimaxXDg1nDFFTy5dhjE+uIZIVVFYO1cYVaBP1TuReDBlTAYRiKmBsiwVAnMLwwYxjYFZjCOUVXMDKpwC5WJGAOoG2CcmH0YkXy2I0SwBNjQSYdOGALqtW5nuZE4GcKNU2MoxNPfbwQqsQx7AjMGPqdJIghQDA5hX4/jy3z+jKsZ2BHw071kDN1CfzW3jAoyRrA3AjoFuF+EWeevBOTuGSKKcq7rMKCGAsjOA+EgoKkMloWpQzysFNDgDVNQXRiCg0bMCTSoKMjFYHSvORWFcMUUD9JvcAmQTcDvvhn08lcmygaubMJop7mVQAqq5gjXA5LISEKhCr0qUFFpVu4zYBsBCgLuaO7WTjstJgNSBZrMxGlN2AliLRyFAgOHXTlCX24Q0bkeaUguYhfaDgIAZ5ZzRTn5a0MCu4M3+3pc6AXL0ISlEydkJy7YZRNK7wlAiup8nItmZkjuNwQIpQ6MkYasBiA8KTIFKxlqz11FL8bOXvPYeRGCTVY1Nquu1Re6zYDHTpiftGYhZZ7lPQoJ50wpoAGDZkI9aVL53BTlSxATM3+3+iPKGvJLGUBY9qwLfVl9eomnyiHqWt5heDHtfD+DSFG1wlSHAWCM+22W22VUDaeliJHUN9TFKMQ99xVE1qABUlrSWbnW/STL0gLOsqGxF1PpI1mY6xO5wBuj2++Q7ckt5xoOk2T6pqEkvRTnmSMrGLvo1jCmhjROszU01DgqqQ2YWoqUJKSFnIXFF2fTTS7PasE6VLEIGjNpyhDQ6KBxpHM18y/Nmw95VpgVMcZN6iHPR2KIaaV4VG4xB3LxsCvtU1Ha26IwhITNfJCgc6r4odfFAJcegt+/lIRR3OsZywUugniUlambygJtChgFkLLmZFK5fvI+26QJLEua9JWZ154sBlWGCMRkgU3aArb75eaRlsRuVKK8FKUla1oiBS0usKeWtQMRWVNdxDGhuRs1VWTAxV7xplovZH8aqCB4MHT0QjDHVXXp6cUwESb4DmGf2Adk2DhK5jEPQm8/aG2IZsrHJIbMZty4FlZkb19LpkxKEDI/btgUVBfs0POcx1QtNHDMVQKKZjiZugrqcNXUthUSIY1clIWNHD0HWyeYFYL3IS/PUawtkGTfAkjpgl9QSRSsYA8QGAEa2T3jxIN2F7nOdil7tqm9RNcy1j4GYuvjYcsl3tPPG8cq9sAeGMaoC781aHWNRbokADQaGchIiNdIP3pqcYG3ogKJKApAlNYArxVhEmF0seFGozAJJFI1CbMu6SGk7K3YvxkbEvHssR0LKeRjnZUMldRm8eE4jWxLb5qJ/DlaggPcmCpGCRQz7DimSQF1tJWUC8CS38z6seIvU1tYGGFdzL/MP60GM9nj+QM2groTXLtlmK2EzD2VkhQoeilK7cQhj00iAJqk3pJtCZFz33ufoFNiRjn5W5q3Cl+MWcW0E/eAHwEkPrBainTYsBbIUs12EjNSr4a7RcSDTDkmFU87C9Qwzot6YGTIxIIpGrHOMyBDKTyb2sYZdzeJu46w6DeC4v90iyP3w2aBYyLOu69jzBOSaXBkBgSB92vakpQ6pXrJzo83EuXYEweArFxwpyNiZSuetZfVGjdPEiyRDtCaH3g8wOo5FaQx8a8x6BETUxVHnDLLFbNbz0uXwtNDlM+KN9pAhRZRJvPePizGZSTGvVvqUM1UUxi6JtCYaReZq/gUoUpTd8KBwje3GIpOxVLod0e18nbWHkGpZ6xQPE8eyhMJkoE+mDpoHDyxqqscpYKOsks9FZzL4tthCy3mbMseicBZUFnkxix0AUdVGunEUuAD0sgWIE9tBatuyGwMclZw0Ut0oEVXLTVGUI5CyGpNLMjZXRudpUW56mtsRCoyRlKyy6RpKY4pDb2rOPUidod7fSdhGyVKQzUXyYk0iK6QJ1R23IGIjJOshBlirazcvFDBlTX53s4TNwvWQbL1cbStKJpGZ5V+AQQGtqlWUqCyY3bZfVHvr4CqrgJEYgYJfdj0qW71UTpmgCMbMGq9qRWepAxVNS1xVrLdu3e1ES26JOYLIi0ip6FWT1CEj9tlg7AJKZ9IX2JpAs5lal4uYjK5Zd1TE5wFYNDGXBbve0C6/zOaSTKXNfFhrEhjgT0NuA8bCsi3d6iFi2OVU2KroYpCqSq5elDBRkjiWbENRJoJz1lC4mYUg1UyfOntjnj3VKExR2thH61a+46JIY8UE0ptqjDQrySqR1NQWJTkl5srS/AbJtndFrFxVrnyrzpWRjbvlrr6No1ojcy14poPtHv0jsymj0sdGRSKL61ndvW6SLN3OWgdmU5IJd+9CiGH2rl8XhSUZrXVOM0ylZVWNsSdb3nQzGsD2/XeZxdy77VpGMfMXU8sgydo8H8WaxZhjvvtVZtwVjjhb1djrrETnSVP/rMuFGQFLKar4tJVQaVJlEhS+sQNETGH511JJg1grc1dvXjiG2NC6XIXAQzWOCaNK0p5AjmKeg5zpO8dK1qUYRxWVAj1Vbp7ILO02Okvow4KzE4pjDoub3CPBmMIYtpqdS8PoNIrWrKrBlWXqScihr4pcoLLRk1TupSJnIY5TVkNs4haa/QZFtRjWqSsNsyhCkXs0FJbzaNW6Mcvo16S6VdKcTc7Ul9bBv3ifbbQZIIrJFDR4xEcb5h05O/j6Ha/Jp/q2+rp9kdATgxFHb8yzUuV8NBxFSvYxhmBFYnQFJPqUiiJuFpx+eN91nWFja9vn9RBL5SUGofExxac1IkmKOuqYQ2a21lkdNjCOtGQk75P0PMYOqR+z0RjAFHQkkwYxUVJrXWWREK31rfZGStNw7LYZ7HPikh0TZ2vFC3xvrbFJuRkKZIhia8hYM6/H1Ja1j9H7mGRJboiPQgiIoytzZ6ACZB9J/BgQvM8GDlCUFlLM3MuWB2AILok1jSu6lnMM6L2Iq2xZxpwWTfJdsK4aQs0x9BpDCjnnaFU1d72tbcpJ0kg3OfJN3wabfKF9J3BVnVQ3bIqUkja7VBio9nPRl4piWxYFC2l+bgjDatYixuCFSaKJOgzmVpKIVZOVuLayAfi2RA6Oq6SuDgPbmCwHX5YBMfKIr0bIznkbKr+wspvelbCwfgdLZAovlRmUUlDozLVcCNeGUaWtQ5YssafezKHm/eesph+KRKUpdUzsNRguYleamLAtKMnwTl+KoqiaIat6Ne2Mq64Yoo1lYSmEqrKca2eNEto5YlGrJQQPwAtCTdqEtt+6BGAwg8aR+60EV0ZDkgh1jPlZqt3WWi9QRGIQzNbGQlOXRCuOOUJ743LaEEbT74wUs6EVW+yy182SRv+l2nq8jDBltRwtEb4UBkM/hjKmRGH4gQsEnemzt960Q07EcfvdMv0xAZml/1rpLlV+yIoByZlUG0yBLaRDUC8pvMCGlBzAxu5KDl5VYW3yhXJG2L143DftRsA2ywiA1Pv0rHZ0SULODwDu5/Nf1GsyeltuQn6Jg+fCREhlbW0zMalsy0yApgTL8pIUO45Y3MZ3X4ICiujN6jHrplMqSsfqaglKXYqNz702rtsEZFUdSWdQH/VrkbTs0HrFDgAv6rxhXoZNzns3fJXC9r8k1cfFPpjQEILJoLzuTY7OdRqGbuYjW9vjpTJtjEaA9qXqCUg5Ig7OZiD2GS+19wBckfyXbRAg7Ub4oSh0H2IC8tEFGbmomyHoZvEhRNsPyYooUPy2+vnFq0Ap9uqES9cpQhf8Pue7uwmPCZiLLxbOkkmhUQhZDqKoOI0pjUUAARQGLL8yazFGrrUaLNWzl/iVXnztShIww5GaFTb48KH/O9hmeAIWTduKjlFQLMyWU3osAFtWfVZyATS759TlxdDR7IYRURsBbMVihcpVsa3n5e0zyvv8jFkVTc6onLczO38C1gFah6IM9FSOwbpqwVI2TdKAG7b7rAoS/OT4qUweRQdtOrlddZu9E6IuuSItq7Hnsqid8QseqHlfmNyGpkrD737wv/TAfRq0WaWEelHiuZ/NAZArS9ktZquXXVhrnZt5bkCLus+mXjWbx3FniwDjqtvPaNwG/pMbmbXKgKul6Okm9dAlAki0DLpY8bwUbYyPZTNLnLPEHt027oCKUaTvbrY/d66mRGxANuM2tWRuZ0+hn+eBIxdl0fv1402xpcpZk1mUIpv9Be9imVe7hJSUFrfV3fNEAl1RFi4RMc1ra9uMwQat5m7bw93QzpKKFSC6Ks5vx2e0N1WPam7jGmxzC2sr4bj4kH6KyGkL05JjK6NPLm1sAlKm5FBagN69634hLM3XYRSuohlFFlQ67zX2s9VaBs51soAWVew2omXtCU1lHOmGnLE3N6lHLkyfXFHtSsggNiQ2hS3u7sLzbluGWe9Un5Z1ea9WqRgQu+z3kS85C0YgsY2bp7GnugWAfpQcFWx0+9KA4IpY5N3abhA5ZC/ie5BiQzBVmZnzY6Rc5hBmfe41ExAypx1kkVNKmTMW1m8y0YuCEynXpXUOxrDWyzmKaCxXSqoFjWExZ4m4s8EntUvnNMzSwO97r8UKX1hjrp0pbV2xLk3iLO63z5jJ81g6SqxF9gsa/aJyJiW1jQiXxjDXi2CgFlXlBUhSt4DhSAoiLQufOLdrL2GBVp1jKxJEMoZOfBHBVrWuzOxRc2yw282HcXKH8LYYkqBiZQXIqSWr0ahqJmrizs+GXAL6YHcYxrRYo5SciCBj0ILLcczts9jkeRgL0pghoR7H9y4HqWynatktfok+Bd/zOBO4nE3y3ahwfXousx0aW7GMuRUx1errgNlqCI5CGygN4xBuqqTiytE5k/rOujAqJOa2I1Qmx/ks1S66xm3YshYhRoAwm4eWuS9KguO251LJZc1Eix07y5zIjIAraZCnUj0hZdZ1BzGkpfVRBwtGfMyZdiOzIRNGkCvKO69cDJA29zGbrRSoV2UXfZiTxUs1eAEGjGqtMjUmjGh3RTIjVaJFtCRWqNIX6bdxmwnRaipKz6SC+9bs+g1iUWrtU+3AVn3bxbunfssUSiS3WHbWiwIy1mSE1JvKe57P1l1LyCLFzSfQavDiSkqdztEpMXPpfZlzHO4q6yyNGfF2Oay2mvumSDdV15JdNKxdZ/qhsDlyTczGLdXGncZOe5Jci9ivsypYk9gF1tgWQzJLt05tFKgLY6KqprJzZgVNj0k2z7N3H9onaedGB+s0ZRalwRof6ziOaROIMgwM5Si+mzEiLCuGctRgJHMdjVo2KUOcVRPIxFwc39BVcNYskXZjGXooFR7b2kSARo+8iUUa08g7wGsMGjqC1ibt2gjvsux2ETB2njJCn+dD3DwXgw7vlp8gHu8lVCYOrc329qVe0ENk5CTV7UrzrnBeKW+K7UhIEnN6viWgXoVImlO2kbOhVN7llrrGeUoRNBjT05DvpO8R2sRZxTCrgoKRcew3wTjZdTY6icmFZAqLOHS9x2ze73rM1MfdN3Y3t8Gy2qCoS8eKCKirEFxA7aKYWQgAajfG1Tf6KUHqajSFYxCpQ6jnNDhfVFXfC9uSCaqSqrugMVfzHJP3ETHrUnbLO/diRGuFKU14LBzmY7Dqs1SwMz9geVP+V1G7iqPMytgHzswgw1GWS06Gyuy9gkFKFIdcDgECGYbHwGY+tvADGeA9ulHI8FNWVxtT6NhnFLV54pWpFi/hDhFSlENLzmnuX6SOlnJU4EG/7iV+SrZedjREhR9SQs07UadbTcpDygxRayMqHjM1Na2VKjMmzTEVSTipDBvfsRWDWW6Ahe3Eat58KZNdjC4zE1RttP1QJKqzalUykybhWeJG1HAxVxf71orp2yHKWMw0sR/HWNW1ljuHMIyE7/gX7dLKPNtZZVebaGdjS27R/KS+vHv3yGVjekvx6wiybux3rXH1c+E6b999HP5zbx19taJsrZqqUypFAFpRHE2XngewJPC8TD25lC1M2rlMyiyZg8akGkpDYec3gyLpLD8vsrdBnooKxXzuUggDoTTGuS/Wlb5CrtJAwVspiGzTK2axM/OY2aWKTBVz+znXPvUpk0iOuvyYuvScpIhxM0SxTQOwoyx1fnk3W215TAIsmlx7O0/bHtZUBKndfKgdV4WDzcSu/vhHKFGmWW17c9NQV6TChWrIjSWGJrKUWqB6j27sdTAGxUyl58akTgpbfHzpAYdh876hu5cbu2YL1XKomsQOxZJ+1YLEyE3VExkpbdSiNnFUdlqQMMfK2Fz20ZVUzjvbGEWMAbyYA2XFHkbYDqPNdhEfeMWjgH0oQvCoIkytHVBQl6JK3W4USWkcMwPsWDKnNeyGEJLpc6/43FPEyxLBqR28HdsyAJxipSmm9Njf1jcvm3HE0s8CKHTfVckyZ9LCST/g/1/dmfVGsuRW+JCx5FJVUkm93Dsej2f8/3+SAcOwMbfdi6RaMjNWkn6olrphXMDry/AlAxGRZGRmPRV4voNjfO7L4ovpMhnwYtu5zmNdgB7KKdt5btrGYU65U8jVZ/1GUR11pO6psIF4eOlUzjq1NqJ2bVCYj5gsrdscz9jcsAH6XMjbcBd+y34FrG07Wrr9Oyt4nivxXjt1q1RgdCwLUqE4u0qx0vv47WwSvZ5HN9w92RCl4+9/zd9YcWGzfNZWp1kEpJ2ASuQN894OAHOch5A/W6M2xYuz5nscV2HQnACHTH70gWyO1nuTasPk8JjT3SxYcTevuI+sBfPQfDwc6SVF8rra/UP/mmwfc3fkPenq5rr6eWg8KZeC3T72L5dH1xZ8+Dvwcw2l0xgGHUsPA5F9vJNwU8v7OLjVjdPW2O96Ak2iY5n2skRoTuo+jvJNIc4FIN7tdQY8PRxXBk0+vNDHf5B2WWP3QY+z/2Tlr4NvoyOLuzW0NjptfnNRKP4yePZAqaDJf3w2bKY27qANVZrRnx/P+VwG6s1Gs0DOtQqCrBuSZ6vtQn0Cg+K2H2hc1N3PX+lPH/KX2tl3rempb8ueFhinXhyV0YN37+y3Aowhr9KE07TPXwxxGA/PFhvAbXmK9ep7kj/9uW0XuhsS+A8f1m+L+Vz6PIQwX7C2pbu7ael9H7MR+d3Dk6MPJGUam/du177INO/r8cX9QU9xmnyzHlvqJUydKTjnDYd3B2/VAT0FdUKDb1mWdhGI911byZtkBo/tOH/+BBI/FCF/OJXoO7HMIV+z7EmItV19X3cUEjH1XGnnihzHfNjW+1+2i8yjRoAZpt3gxE+hu3WziNR5SBSDE6Px4ZLGMR5CE5Vmd4/yMdu5wmcVtcxbMgpDHNjNxeBYelvEkZoaoTvMLNZr7mkdi8yVerqAHI/ydb3shnkdRxqW3FFN3QzougobDSOSQAzmfSQXh+rg9scBn/B4hISJMqW6/8uodw9HCFwMyLV3St2seT1tbNfGc+/EanFJNgisVUH0ZTFbVue2S7OrSbJf4o2kr/VziePIFXbNAxmhf4EtWafyr//8uWtqGLheXi5whz36vJxPXfp4PypayWdVWgrztvU9z0ErGLJY+/pv3yqNzjqosWOupV5NSw8jHGsuPAxCZWtRrYSRhUg9AlU8/hKuLBS56riX+yc4do4O3tgHj9bcfrfUZqRCLnDlXbFOejd6bE5aYHp/yExsiySDGgxWbMAhZmHI9v54YTYaa4zB72MvQhjmtUZnC8IUs4XOU92l0Aq8RyebRh2stpqkC5xvnq3H7L2k8+Uu7pOP0yVnOO5ayObU85ow095/E211mDwjNEhtd8/dcd0OKsbtadMLjsCwm2iVOG6pe1hTRJJViRJxOJ3iuKE875vdjxs8mydYE1nJCrKVNejQGhFhfZnNK/a0GUcLTtHG0ma32P5smitlMufwrn0GUkzKjvQpqxrIQGL7a+jzxaRXaul6ftAUFOjt8E4ttq3blmRYiBVS4xBJHGtDNdWwYiS7WJl0+/COL4WeBvrwSVxDkOXB2ujGysE5v18oVqosPtaKxyHn6/1donKAZKHIwSMz8PLJPjs1cStC6YnN7AysW+NCvutYv7Ra1V/XSrYGa4spgh8ntCjmY89b6cYxzLeW9FNl7dJ2iji23mnX6rpjFMoxW+mYj0l6l3bSQaDJPJFzYXyh0r2JTdq591bERwmDVttqXAdj13Po2B+C0uCr9RCkm3yhXe9GjqgjdMl6vEusWnu7hjpEA3FvptugbhYl3TktGSY8iwjTDR6YOs84UR6HTH37RDod5BlfJmxmKWxAq/5QiFUgPiIJ0kSNXpjjVlTVp5VjIkjXcOp1K4i+1/bbHy1CngG4eXTz6kom+vTBly7OoVz/+F7TrcUdJ81OjYJD186awtYJxNZV1/udrKfJZBXyCggXiS2NNhZpdV4vxo58NKWBI52truvz4rWItHwgjV4cGbRsvXclDiHGK9XiRarfzAOsmEcsF3alNJCLD9uWOpO9eye/AaKxYRRl6X6U6xjYqqGTc8gkrYFN2YpsICe0T32Mm6L7odfnkTYKapEIqSaSGDjd72Glcx+tVCDDdIWRurEXhvWGnFpHixDezcXE9+fRXE9EMvpVsDzFpotZx0AO6sxRKgTrufThouQuuzZurT7wubu0lerVAXI+by2/0y1lrVez3pxrJTwfvBjIEvwApQPO4D29bJh2VXUIWoHJSSGZ+atFUwfdx2eA5wr19/GpG6ahlMfHpYm2EHo/3rf0hOdJWvzL7nk1YhKKcRB0fq9P6oMh9FCL+SHm1Wwdpxfra11IaZKGzxfO5j/Wf1cQkwjvc7V5X4AeJ0sAtWxhiuUykrYTxVnB1KofbtSkzn5/ERqNOLo1cZGcMHyMy9P1ae7kz949PF+YUxFY8U7M0BUMCDOLKjWy5FnBkhsAWWEwIXQ5L+hGwUCjqnU/hAx4bcouOK9xVAXUOuHufrnycU6ueNDcfWCKNJIdW6kwojx6uNz4MdHsFDzQuYAbK9nDcDa2bszXb6V8N+DOSXIMg2SQlKduiHkhCdHDWpd5uY5tKzfJkFMzxWDSaHW7bhymcPFE/WyRrl0qjfcvFnj0dvfOMw8EDGOcCa6bx0w9A34QQU1lJJiPYCJmKB9H9C23yJKw2bv7oRHFa8r29fmyqmbx0Q/cOqN/uoKlK7R2bauaSretOtm2rVjVsBtR4jzBEHYM6+EumDk3eXr40z9OtrdiPe73GzxjBOZ5GEakk8F63xPaFqI18t6T4+j1JXx8D8Q//OLA3lG3WJ5h51UOgXHZsPL88A67w69Ro60bUKxc4ebopRJQXibPItCGiKYschKydLlcEUmU1ChvgHHMQS1UoB2OL70yjy3mAux86YaSpHtJX7epJCWiK3ggFN90mLA2ljpoP8YbBlFL4S4M51oFpinPSSOXbpFVbQvKVHIDrPQIeC92odCA6ePgt8UFM3gjf5e9bc/4uGcDyIuBPeDFOy/4ePfcQ5+4oF04b1YtGV4ihkn80L2sZ741SXFuXxVQJk42/vKbQMjwdaAGWdmA3WEoTwNtBdHJCmBg+LyFeH/y96nIaWp3L/3+MW/9ChUV89OmOYivYZRGtXBfHG2lYL9vsUtKBPNEjnrhDdhNl82Qhm58jAWoHlcMU3j3ucN3QyPPdphoOjlYv9LoRKCrK71n9mSPc20AX4nNVKVxmKzEaRzEaeVYiIPuX9LWnIQ7fUoYeLJFnfdkThD2VABsUY3djTNuZO/f9c+bDFNJyGttuppkZAXYrIAKapAl1x0zj3flCyEtNUuYnD+ROcfhcT5dqlcDbYsbD8UerBp5vj8b9rxYKtpg1+O0BaWYDQd3gb4cXIbT7jr1AoM/5Apakx479t0njmPojZPAl6LNiBnwXgRI9ziZlHw1H6SRsdZp1UYK9C1lm322fuCSsI8XB6m1eZATDDMdPxsx+97FstEu9hX7Ke83NGpsKWKqV9tV2x28587T2QdMw8hk6qkrezHUDK/jPNRQg1dxN6YV5qT1Xx7HWvEVQLn0CwsiG1iFiB4CbW4evACrGPBECkhlIIzogFIky3sjFL+v2xS5C1ozMp6Got5aMrRSjAzCrnvvdltJA6y1aWfNdK+NpmFZGrhf7HhnyawvgWXamTdToPU4K2zwybSUL2Sl+3HVLgaOxYAZqSxggrVOPIhmUPNmssExmsWgVTGMrWMb9XrCu2Gx0RvvLt6YjR73rcLGQ7k05yIBGxu0lVWDkyvMtIUGASvKkwAoO4H03gFdmKyLVvGOVEYzYzF4quYDqgtgwId+6+olilFct9MDkaGeBJa0QdPgCRerBjEmLH4MK1pVJgiQtuYIDDYOw/4j0DuMpogEqwYHHsdqpM1QBEHgPDmT62lh6yaGeYiRLErdxcv19Aw8LexgBjc69hHTPZ+dDz03GucRHTAXsHUG2poJVqvc4fCePTC8vx+BqHbjscHBDKMrz250X770mQExf9AKNe2mfemAgDuAbxey3spLx55XwxDZGe4nBTGjAPOOUbtEQo9k5pluPMHp8eAMtp5YzQdiWF82K7UuMB1YcNna7Gy7AGRSxKQPZIfjBH8TBpZtax0Nbqv7j3/Ymz0eRylGrZUqp/zgiQYPmUM2MwTi4Y47Jkc7ot1hj15rfkJehl3Arw9DwzQpkFNhpvthNcCUxsDDYJ7aBTfelEB6pO4BtFrK7W9dGPmZvOc9IXdXAPMMK6kdMYTOWM6XZMC6GVoXb2CFr+30nU+WGpIAwTpat1hv/fJ3u0sV7KYn9MvuRrtoOF1GFoM6YH1eFjI/1o6aewEuuaKqD6sAxptOI6Wi5IFt5WaQvBkSnMKenELMjUBrrA0rJUEaG1BrWwWbAWjd9NlJMXz+1SnQGpFp9tptxgJUI/0u0VMwW2+WDImSGHJSoCOGmyq3wCUAArJ1g7/RkdTfxNuG9RMtZGgA1v1WcZNTPqtVYBxZYCDWG0HiqzUDUgB6TTBcVwXqmhLQ7rTJ1s6hA9CMLmkxXGB4/qt9gfUrAM3lMzCHZyCFhfUGUQqBQsMLgMvaM25gkOfg7i4DDChf3QWgqXZgGZziSgA+WS2AngG8zG0lS2hAGancgDDYduUTGciQLwnfIc7W+g3gsl7i9srloDezsq9uwfe4Dp6B7BS41K+vyvYdnTJgFTjPb3SkdhNyvyiQ6lP+/sM6tc3wndEsr8z6c3BmWCOAq768Zj3l3xqIBdiefljPUF9vbx3qk8E2AHjJ5+/gjZLTq6D0urTz7Qvin2J9w+Nv6bsa7/NWXnl1ZXsFeR7evwnlj+/eKH4/LKVuZhi8A7D/8Da5v3tDcv96/LH1bXT3/o1Td/zwlvUnJ98fBg7v//ij1o/RD9btT5MP7/FTvBb4ifBIbx4i/vDjtuGN7OZ/JONXQOwP04b/Oui/Pfn767/jagb8Hqz4f3uW/8ntv2si8n/I9zcX3v9E0iTAfmIJw16Fd698l9cVIyMY2SsK/IeX+SsH+Pvl5/3fM96W/1OZV8MHetvwNvyOoyOj74RSugGPvjO5vp8ZbxUIP4rbj0P89JSvj/R2+Rv8bv9/4f8DgIUKvI+aCLAAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "\n",
- " \n",
- " "
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "ad5c8b3eaad240a6869ee788740d75e9",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0/1000 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "ename": "KeyboardInterrupt",
- "evalue": "",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
- "Input \u001b[0;32mIn [11]\u001b[0m, in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m:\n\u001b[0;32m----> 2\u001b[0m image, (sample_rate, audio) \u001b[38;5;241m=\u001b[39m \u001b[43maudio_diffusion\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgenerate_spectrogram_and_audio\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3\u001b[0m display(image)\n\u001b[1;32m 4\u001b[0m display(Audio(audio, rate\u001b[38;5;241m=\u001b[39msample_rate))\n",
- "File \u001b[0;32m~/ML/huggingface/audio-diffusion/audiodiffusion/__init__.py:36\u001b[0m, in \u001b[0;36mAudioDiffusion.generate_spectrogram_and_audio\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 29\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mgenerate_spectrogram_and_audio\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m 30\u001b[0m \u001b[38;5;124;03m\"\"\"Generate random mel spectrogram and convert to audio.\u001b[39;00m\n\u001b[1;32m 31\u001b[0m \n\u001b[1;32m 32\u001b[0m \u001b[38;5;124;03m Returns:\u001b[39;00m\n\u001b[1;32m 33\u001b[0m \u001b[38;5;124;03m PIL Image: mel spectrogram\u001b[39;00m\n\u001b[1;32m 34\u001b[0m \u001b[38;5;124;03m (Float, Array): sample rate and raw audio\u001b[39;00m\n\u001b[1;32m 35\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m---> 36\u001b[0m images \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mddpm\u001b[49m\u001b[43m(\u001b[49m\u001b[43moutput_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mnumpy\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msample\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[1;32m 37\u001b[0m images \u001b[38;5;241m=\u001b[39m (images \u001b[38;5;241m*\u001b[39m \u001b[38;5;241m255\u001b[39m)\u001b[38;5;241m.\u001b[39mround()\u001b[38;5;241m.\u001b[39mastype(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124muint8\u001b[39m\u001b[38;5;124m\"\u001b[39m)\u001b[38;5;241m.\u001b[39mtranspose(\u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m3\u001b[39m, \u001b[38;5;241m1\u001b[39m, \u001b[38;5;241m2\u001b[39m)\n\u001b[1;32m 38\u001b[0m image \u001b[38;5;241m=\u001b[39m Image\u001b[38;5;241m.\u001b[39mfromarray(images[\u001b[38;5;241m0\u001b[39m][\u001b[38;5;241m0\u001b[39m])\n",
- "File \u001b[0;32m~/.local/share/virtualenvs/huggingface-OfWfm_Zx/lib/python3.10/site-packages/torch/autograd/grad_mode.py:27\u001b[0m, in \u001b[0;36m_DecoratorContextManager.__call__..decorate_context\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[1;32m 25\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mdecorate_context\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 26\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mclone():\n\u001b[0;32m---> 27\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
- "File \u001b[0;32m~/.local/share/virtualenvs/huggingface-OfWfm_Zx/lib/python3.10/site-packages/diffusers/pipelines/ddpm/pipeline_ddpm.py:58\u001b[0m, in \u001b[0;36mDDPMPipeline.__call__\u001b[0;34m(self, batch_size, generator, output_type, **kwargs)\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mscheduler\u001b[38;5;241m.\u001b[39mset_timesteps(\u001b[38;5;241m1000\u001b[39m)\n\u001b[1;32m 56\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m t \u001b[38;5;129;01min\u001b[39;00m tqdm(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mscheduler\u001b[38;5;241m.\u001b[39mtimesteps):\n\u001b[1;32m 57\u001b[0m \u001b[38;5;66;03m# 1. predict noise model_output\u001b[39;00m\n\u001b[0;32m---> 58\u001b[0m model_output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43munet\u001b[49m\u001b[43m(\u001b[49m\u001b[43mimage\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mt\u001b[49m\u001b[43m)\u001b[49m[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msample\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[1;32m 60\u001b[0m \u001b[38;5;66;03m# 2. compute previous image: x_t -> t_t-1\u001b[39;00m\n\u001b[1;32m 61\u001b[0m image \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mscheduler\u001b[38;5;241m.\u001b[39mstep(model_output, t, image)[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mprev_sample\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n",
- "File \u001b[0;32m~/.local/share/virtualenvs/huggingface-OfWfm_Zx/lib/python3.10/site-packages/torch/nn/modules/module.py:1130\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m 1126\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1127\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1128\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1129\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1130\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1131\u001b[0m \u001b[38;5;66;03m# Do not call functions when jit is used\u001b[39;00m\n\u001b[1;32m 1132\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[38;5;241m=\u001b[39m [], []\n",
- "File \u001b[0;32m~/.local/share/virtualenvs/huggingface-OfWfm_Zx/lib/python3.10/site-packages/diffusers/models/unet_2d.py:147\u001b[0m, in \u001b[0;36mUNet2DModel.forward\u001b[0;34m(self, sample, timestep)\u001b[0m\n\u001b[1;32m 145\u001b[0m \u001b[38;5;66;03m# 3. down\u001b[39;00m\n\u001b[1;32m 146\u001b[0m down_block_res_samples \u001b[38;5;241m=\u001b[39m (sample,)\n\u001b[0;32m--> 147\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m downsample_block \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdown_blocks:\n\u001b[1;32m 148\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mhasattr\u001b[39m(downsample_block, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mskip_conv\u001b[39m\u001b[38;5;124m\"\u001b[39m):\n\u001b[1;32m 149\u001b[0m sample, res_samples, skip_sample \u001b[38;5;241m=\u001b[39m downsample_block(\n\u001b[1;32m 150\u001b[0m hidden_states\u001b[38;5;241m=\u001b[39msample, temb\u001b[38;5;241m=\u001b[39memb, skip_sample\u001b[38;5;241m=\u001b[39mskip_sample\n\u001b[1;32m 151\u001b[0m )\n",
- "File \u001b[0;32m~/.local/share/virtualenvs/huggingface-OfWfm_Zx/lib/python3.10/site-packages/torch/nn/modules/container.py:219\u001b[0m, in \u001b[0;36mModuleList.__iter__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 217\u001b[0m \u001b[38;5;129m@_copy_to_script_wrapper\u001b[39m\n\u001b[1;32m 218\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__iter__\u001b[39m(\u001b[38;5;28mself\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Iterator[Module]:\n\u001b[0;32m--> 219\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43miter\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_modules\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mvalues\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n",
- "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
- ]
- }
- ],
- "source": [
- "while True:\n",
- " image, (sample_rate, audio) = audio_diffusion.generate_spectrogram_and_audio()\n",
- " display(image)\n",
- " display(Audio(audio, rate=sample_rate))"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "ef54cef3",
- "metadata": {},
- "source": [
- "### Compare results with random sample from training set"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "id": "f028a3c8",
- "metadata": {},
- "outputs": [],
- "source": [
- "mel = Mel(x_res=256, y_res=256)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "id": "269ee816",
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Using custom data configuration teticio--audio-diffusion-256-90642b08dc2c6e33\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Downloading and preparing dataset None/None (download: 910.09 MiB, generated: 911.42 MiB, post-processed: Unknown size, total: 1.78 GiB) to /home/teticio/.cache/huggingface/datasets/teticio___parquet/teticio--audio-diffusion-256-90642b08dc2c6e33/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec...\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "c91ed8a7a45f45ffbc1452a7219311fc",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Downloading data files: 0%| | 0/1 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "2ec310f8d315422fa9e77e16d03c31b1",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Downloading data: 0%| | 0.00/478M [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "b1991466e6284dc8bff1f77c68b549da",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Downloading data: 0%| | 0.00/476M [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "418bde01b684441fb71e6f47208ba08a",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Extracting data files: 0%| | 0/1 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "0 tables [00:00, ? tables/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Dataset parquet downloaded and prepared to /home/teticio/.cache/huggingface/datasets/teticio___parquet/teticio--audio-diffusion-256-90642b08dc2c6e33/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec. Subsequent calls will reuse this data.\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "5c3b284c3a3f4afd8e1dcddf7ccef699",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0/1 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "ds = load_dataset('teticio/audio-diffusion-256')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "id": "b9023846",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAEACAAAAAB5Gfe6AACu20lEQVR4nDT2R9Jt64Eg1n3ebH/sb695BngAEkjHLENVKUiREhtSSw1NRKPQCBTBAaijMbCrUkhUFCsNMoEEnrv3/u7YbT9v1OIaxYL/9/5aTV+qm/92T6bjpa/zWy7jaOEfISeFIw/vvq7ofLoq9zZo2u0pmSciy/ivefvdt3W8XE6KjjHlhSJjLjc8WHfz7fs6j+f5cD3eWyJv8w/fb75OByPt+9/cCns6nkFvtGdr1Ot9eUTTkP7th33pj5fhTQ+Lanclc8PG50tN1S++WrPpeFXp9OfNew4CWQwKzzjffny/odNhHC/PC632pNWnc/kQhxO8/9VdlfrLWaWjvs1fv2Pu+HbVVoH37++KfHm5vlqfZvLASnPR4h3B6FuVH0O53mdjWarzhMu4A6+n9zSx0om13GVlSw2dGGu3Kxyxj6gdcerKTbNcHKMCXH7+3S+h/TNqrxPq9yVft/pqk+m2CZDdTsMHG1fimaN9u6eXEFpZ/uNdKDgHBaKwlvh+W+1FnwLlvpg93W3wedkVp7ZHsVjfZG1yw62ObYfM55gzZgiKcrNP2hLCbo9pL2/4S7nCFUtwWvFNs/QG7jE4zR/qFb+EiV4aijhc1eoaaDcPUOBiJS8cvVsR8rVwMLVUCnXy4LFLP+PUtOD0txxNBt5UJeL2kMJmqNwu78r2CTL5EbomU0dZfxprWs37fbcv3njr8UugVcwCqcP3D3vQLuf63fqK/QdYrJDN1HA0uekX5QvgK7FffuSRvC98U8fM4TAM3Y2+IXXR7icH4eZmyG+bEnF9gukOXv5NdRs2J4pxnm4ybyTl6mh10/15Z+HmFnwxa7yt8dvkPaPuGvJtfqnALeTw4lPzNTsH8voXxF4n0Vi+4BbtwTVKtiWy7T7fVOBdA0fW2Xfy9QHYu/WpuAH7/CrpIytS2OiKXrbez+v7br9E3IjiG5DqLl3f8di2nS6WatXcRRIhBCF2tXFf347lhbfedrtuk51t+XtHcIf1wjfVpnkH5rJWVVoISJtF8Bt2JjcdS9Uo03B7s30PCNjnv4DQbeTxpv2T7Fojkep2HyEIOGNknhvSf31vmS/7objZ0zYFz3j3/t/6C8/HHUN7UukEWhHkd79wwmDiYREvbfUmCIYrer83K1LxgrzfshbkXFQer08Xvmq+Sk5AWMaM0zcI1pKp0y1CSWozJiJEVfv5+H6bMmhK805Nn8iuzoAHVxYAQgByMoCDW6C7XKX84UypLJN3mDchGxw1GyEgss5rECWPNmBMG2AE5aiL0fFKx8eWCwQJYziDTIp8O59uuSgScOd104GcIQDZrjvymENITm7mJVApQbQnvmoz/FrGRxUYpywlXzr8CBACCQJnqoneFL8Iy2VUqmrv3se8eMLhzHFOS3EKPmOjGEkgDI4DkJFIKJXsiStksnH28vuv66WwUNthyingeKKT4arHES9ZzwADnBNKeJ9+LoO7QmwN6OLnIueglhvo/bqYr4RB8EVm4lM2CcVrlxOOG2heRADWLrMOhI4riNFKFRECur3i+XxBmuaA6qPPKGcIcrZdPEVkfQjJmPPX1xOUMTh5Cih9Y4708rZCBhW5KYbrkoQMEUK+h27FIENBTkcKZ05wLDHR/lCgjB6g/Jd5qecTw8iEpHMkWsSAhv+haH84owu/XKXlwqfXH6tfrsf/17T89w9RPc2Xu8K+vortN+ztxz/hQn/6O/LNXeb//Iwel8Onrr5ZwU9fApE4nH6W/wea/dPC1/D5U9q9F/0f1G/x//sfin+7rbMy48/wUB/jqfmY03/611/f/Ar/8HRs/jtjP8/H1pnPX+oP34iff3ohfmHhw/x/Nup/Cfr/89eayPEehf6UpvfV+OkN/PoDTn/6NK/8dMz8r5D4/ZPY2T+O4te3m/BKPKTBTq+fVWctyEm2pIfoH6ef/s27pP90KQxOP+ncbsLnH2VqP6G4fYg5PMPJZHVOfhWwimOR0dJcOQPR/s+vN1t+dW+7RLw3QyFMOa6ywfMzsJnrfRreEwuW842+P5nD9L9z4fqf8r8HAZ62EdjrUKBMd5j6SQWF3Kt8gxPsmtZosW5InMZBxBD+6br8W34grg45LiO/rM6UxRa6cCbxm+wvGA+ee3NM7/ibGj/90qfl97QlKQdFUFD94QFF4O/ytFDww5tR5bGY/QrLP30CH+8UYXI8oIdk58Eb9E5eEW7K0qHtFR7jKGzy1j0ilGZufyh9WdahtYg3v/mI2zhPjZgN3jYbmjJpfvuXKcGUE521+GtP6NkV+AgQvymShRW2X8M0hKE4LIDL/21ABN/u7RrivwxUywlU5Ou7/ofnsK4JFX8LmQNwvY3wQgavNCze2XdAMHDTJhT+XYDOhkH9ri9julxOBme8qd/74eHj9itQjmCxCAa5aT2wdtzeMXj9DcJWOqMxXrVumuZc1iSjC77WxJTtv4U2L0OPN1IX8pxovy4f34XgE8jWmAHeYhBkvuxjlUkJ6kD41iXA/DQI5BKsQOeusZQp5wxyNH1iUMSEwvocbubYoirYBdZNTuPB03sfcotLNyybbYZFpCB4SxLaJKFgdau1P9ytHpLWTu4RSFC/jsJEVOUE3bDbxpwzSNn1voaygcBxNm66a73K0e0FkyHbH1neE6D3PEfDDL6hGVQxA3O2fSA3iP74fjFvX/NiW4NiTUgBShZDGlB8XLDMBY+OE3Cfow8pJwfSYDHJwS6i+pHPxwnAbDqXcL58RUU4IPM2Q+j9PDKYE8gwepbVQMDwvihHHqarBSAvEWkEgcyOBqlOIaKofIjUfOOfC2tIhP6UQZgZXRbdngzLwZxVh2loQ7/++eXKJQSQxbeEUIQxYZdQOCkEsXahjAweBMlLcRUwoFSyUdZVnobAhho/b2EQ4g1TX4EG1gDo8jliCjy79wnDSNaZZgxTnQOxEJwBSmS9nNscg4XZJWHp1F/GZX+kdlWQU3ga667DL9PmHthAMsqX08v19hdzv3wuaXwqSPFtbf9oj/+NMD/8ZgLkRSy93d6Gv7+Uu1+sgFXBX+zT3z++0zf2+T3Eer5spvn9aepftrnXiXP09vlof/Ue+j/2sfp3hDJZLk/h5eXXv/aT+lOliitcc7z1z8sf6c1YJL0VML+MStzB42e3ufsOXR5XbPmhJbTLmv/pltxZCni5xAxhALFe/wO/ndTMU3CWEyZCisRK4qbaRdcPHyoM1cUDMEZqZANaT3D3e9N+aaHRtyPIuvvTe2Gw5A6QwsF6Gp863gIH1YqvFlwgh+6OB9AU/5eEJpyf7qiFaMxUUMJIKv1qE8QvetsAL3hBfx3JJOm4rucPfmyXwlZAykPlTVkPcfXjfyRS41UrD/UBXrCY7n+qLtIcviERt3F6BxkJGwRsyXq+oX3kgqzLvKIC8o8FIchi1pTVNhx+mc4bxf0ZuMjS3w7nD+Z7Hn156+F/JlOIIT+w18H5ie7lBl7cPyEGbGvifbc02yn5Q2QYu0V3uyVC/7YvkAL3jZqexwjeBRDVN5sheYI8sNC+fjtXB3z7XZNTsM76tLz9dAtNmeXjap5nPd3EYP1liz3S/80axOSdt8i//hQqZPUIdl04wduC554p9xf16/n7L7/dh+CW9Y6p8fDTTUMpMffBjJkDo12evt2QI/Y1C30U/Xeb+Q0UhnWGe4ZeV0uBvuWaRu1fcUD2R9LN0/Hp3Xu/xPxQHsk89yNZvi0j3NiJIdb4AcAPU9Qo71l9Q0HaYnCTMMxueCnQTc7hpsAwOiQh0afbqmEpWV7KHlQ0Be8Hg3dY5iVCAFJOiyS5e7DVlmJ+W3AMacE4TH4NGQAYgZwzjOcHspTtzCgEyOOarSMlSDQgFau0hjp5IVIK9Za4sWhJwXE8h1pUgGZzmhDPcVWFcGKFyGgVgj7I59MHkWzqaU1biAOFEeCwmmMjPiSSD+gG0sLmGH0kga4EA5wwuoCgV9LaYLCoAQxQShu4fSUrmmFOKdLbYbIZhAaPNEJfVD+AyhTexpSw02840eht0iFYEJBcpk/lKTGBFpLMGlwZXO7dy/iUI+8w8HmsUgps+AlmiZsJXT7rs6JTZGQaKxPGznYsg5IOdtQxzsqRugrWGednK1GKMM8LQzmJfGEsDcjHMj0Lx0DLuvuf5uv6DCBM5rTl0AT0p5YG4B+ZM2Wf3G1IiDUlCiwZAiGuMEkAc+jqWBYJB+wlhzlQluxwrdZwSQElCCLGAiXkfc4WpWVLsnQaD616Vt/+dpllvEYIIwylYyk5DyOaQQTkSqZ4W/QTRF0gLL7HORgfJkF+VMebOgxPcv6F/2kfdvkuAxCTISgYWDTwNeZAu2IeTf4M80/wr1azdVnsfMoJ0B4Y7D0Gdbv1rHQBQI/Kp59R+D9RVHfLzg9lThJPXw4tXKn0yhkXqYAkty7DEFFRQpBwsoTm2UPeQhfjkkCYUoQ0eAtzLOM1j7XeIBxzhhlk6AtfdeG5o1YCW7rFx+O7fEJP6uENFgGmQHLMICSKaAznBjGcWRCMJVoGVfisKd9CANXknAY0MspOdhFoBdBGJARSgDklnnkkQLTjKlm1mDxlR269BaPqOyJyTjHFDILyBQAwASEgolObQo5w3Izfb1xQJuQbaRj3mW9O0ODrn+iqz7/eGgtBSsam6DEEKGdaEFLsNufLQJ3/Ej/vm+usKLoX5jLDRrj/ouh/vKlHOHLFdWVgXgRCvC3Eu+zvJ3F6M38tTrL4Ns91MSXgY+2ykpYvgSbr+wyZp4RNNKp1x93sTVhyjMx9hhCdvv4w3looIoRu/LoeZgigoiGnYBsLbdzfusFDpe0PIfg65Y9wOicWPY6OuCBGfEFlQDHpApGbHXzNrtzulmrnSLJPUwaIo5GNlVuvNFC/u9J2ok18GjgKMyaaX1YsZfihkiQjVqUl2RTe+BJRqs2/3BCou3Baocd/fU04F6ocX6sdKbyXdDZ1X1CmSghRpVoCKCwpiBxXs8sEscX2K8ogBjZE7yNyZVmCbLXErPPAH3TyK9dRuADRrXKCOcYYMMby1K/gG4AagmW1IYxmRKooonbGGODVA4fTXOCMU6aZcqdtLSiziIZn07br1J7OYF3k5nxhCWABwfW2KqNxdUtD9G6dA2KYyKmloSMwpg6TDBAHiPQXr3yoRheadFgLbPD72UEYYnPN4f4duEyFUhoBhUKyNtB0os9iGO4kqCcHfLQNRCBZjdMUpEnzEMtx7lhKeU6WZosdJkCFw+e2oRDDIZHrK+lglotLFmFHnUdK6hiARvxs4HLcyYVkfppdlHRxFXVDKuvJQCqzAiHkDACIJtpoYcoi2GXcaqQU/AQFvJztBM4/rq640ChntJTWRmB1DBHEMzGFszlBmIFHNuOstIH/D8ERzhxqBoPHPkZixqYDEMIUIoDSXxf9L8W2RedhDXBJ/mFbfoTILgyvkH59ebr9sKTZfMAmHMfV51tpbqEER2ZIu0ivzl+x19SAd7D/UWj8sQKXg90HMoD6bsnqrL4C6fzDt++FmflrVZgfh9vX93qDn/PX7+NPb2RLu1t3/nT5QP6Uzd9s7E+ZHMf1VdaVvVPjkCv3Vfjh9T/sjJp9fAdnD/6p/Q84LfMIWs+fdnSFz8vc0fNo0OZjekcABlY5wFCEBFKIRgH/x1vMAQAMeJRg6KOEwYkKQghj9iBbU5TOeeJRzg4JI2OiDeb9ADpkEQw+0owA8HmcywTtAIsUNvOVSugJQdRQANgJt7DxiYbgZGtwAguTXhrDTgWBKi38ZoUi0AgBkLJHCaLgzQYf5tio9X36AQDdjDjycpu8gTAHABDg0MJE/PXT4H9z29XIZ6dFoCCCf/01n1gCpsSYLD2xPKKrIAiEYi04TFEpipCHjGAAQSBbNiiFzEf6CgANz9UABV2CQhB7rIFPNzdiwkBRGFOEGHiGLJGCAsEIsijFhHEgYLh+8NfWD3daN8lzfN+Z15IpsEYrOqLqbVdhbLEyWwFTThmJbRY9+cpxfB5iM97VMXvHYcoxQQg9zN7NVVOrlIe8SmjtHvAba1uydMjwqHmOBV4ythifhDOedAgl63THI4qA1gCLRFBi3q8hxhMTiOM4kh5UwEM78MBtkpQE2vQEe3g+LvwjLc3y1LATS1+v3M9HX17f+QOefslQ1iW8ruccAslyavmLkBsySheb13IGnlanDi9VkYIksUSIHOfum4rMnrBB04KVpEojDqq9rusGDNz4dr9gOwuU4UIZYY/JB38s8nljc0gJYTaU5HRbW1RSElH01q6U4M14KYq5hOe7dLxT4740WZz3YouvEEk3Nmkkxz241FJiCga2rJb+o06AS3u6nWnk/q0Qz867jr2WT3vS5xa8/uIrBP+fEVkYwzu+lNOhQSMnDZsGlNBMPSUh0UqCmKM+qUCeyNctICOsyhwTuoPDYE/jewSjUY8N8CHFAKI/5XUNovHFeBoJ/MsOZjcJEnwGRbVAe57v6gRMb27A0FCTXI76l1DNFVbHf5RDXZCv6gxxW3gPgePIOW9e71gCs647HiOMIaR0qFsSUUJwWpGUG12MdY9i3ZfzZhE7PIEKfubv0TDcsuunVUQgxGEAdY4Eu8SthzSAfHF/jYnuCMHJJyux2HCaCYzTuahtlpNELM8IzP+SKKr++RdFLJZxUiUQ+HwYN48rfZlGXxwnCMnu+jbZFGPfLR8875cfUdMZp5ZufejPFBYMXWYjPmCFMvGHn07FTcHOvT/TowVRPLyNcCRGamokPN9cnrQs2mb5h9uIv0WvG+T1ML0WdRv/EYaptvBlJziN7lj+tN3DOxlzsLLIRYZRAKH1lRTu+UO5igED5XOErgLqvGkBq+Nce56JCBAjxUoNCnICzVTk5CA9x+Brip0LycOUsc6ZpB5841f92C1hRkUoX0F1IDIMaL9ejbwGz//y23F+6PeivE7zAqr60F3WNF70+PqwLVvqyGY2/uWum2dsuGDVvyCnfz7v//w392volqfbe/OC7VPOzRgOMXUTv+6Uz8Zx249wGkuflwUyZsOP8W/ey/R7bNDrQzvE01+u+zmXyq5d8AkmYwKKWKPsy8xfgZkrxf1bIuJs7NXFfJhrkKD0gV6BxzGhvIKYj2cM/68f5MIxfmcYHe3KVfCTfKYdSAkebrs10lmRUQvmbSZLxByCCPK51astmmPUn9/QIxqqTS2dpRmFkAkecjE4BePWoAIWQC4zitCAzBHfuNNiGun7C62/xm5MCEOXHZXbKbjLuM0txCBjaJMndyFDAIY6jwPgxAUL7u7UD5InBhBAmC1JkXC8I3la6Ne3eoAeaBoyudEaJHImrRzmm0f/w9VJAHEi4l0cCoesfQXnKVa/7s51f76h5KWmype7WOKiTMBTV1nG+isA8mb9Ds+3PjNlGh76WCwGM5xS9kW8JzDkswnj1rXVFrVrCARCIMWMsopgFwIIKEtOEWDeg+QTyAQFkcoQBA3znJq1JyuIEcoxQSLWVjN+W0uKIEQ5+IVtKcjJcFxubMY4B+9ArL7FgmCEIYJuJgCYbUHjxk3VanubYgggxYQqglPaLSFuNhWDmy0gACRE4JquvQ+QZ6MKiJuKO7zZSnI3054o1bGw88y9dOaZymWUc/j8q8dS5zR23DjGGQTEq4yQBQBVEYwvKgeAIOjvo1OwrkGCGQCQAcBZR0QBNCXKCaKQAEQ0+xwBhBgBlkOCBJWce5oRBCiDbDP2yrucI04I5wwAYSDlFPxESYYgYYRznoaVZRhmBBAAEWSQoAwIQsBgyCnlnFMM6stfyJwTLi5n2fkDowlDHALNYK7orDDxeGEZJGdzpN5uyC69mORvAJRPk79JPzD09x+DK3W8KYS7RgtcmOKFYEKtJycE/tDFe5iHg841Ky9SV725zDTv/bFIBHhb4YmOcwkwmysNEQVigDwjPLrQjB/SeWw9xLMqcvZ98NRRFB0574H+wqrDEQqPJPYg2Xo9Jwt4dr1Cwa6ITQCgp3+62bCQ24gxtlDnwM8tHUEszhdLkncpWIh7ZXsaGqw/Fze2O1bY1fbHW9azr4rrE41Mf2+pdNV14EqUkNRh8y3PNHyQNyqi8Dj+9HcthqBMM7bzD8cNq8A1aQ9Xu6ybdj7hPxUtzsM//c26X7Fr9DvpFQX+Cfkvc4yaXpoWVvpnJb/JP9D46ZvdqZ/8YwGSD5kOz8b9tEKa+Jksb+7QYQl7L6lUzF5+uCsAiOXKa/H9444cz967r8RSih9PPKg/nB9/1yXx5f9724XEgHxXm6cfv3p+9yJO5DGcD8Pbx+3y97HafXVaivHUHrfuugjs6HQ9fAwsjoH7sfgQIITvUkzZZxJbf8sIqToCMWRSUpJQ9g7KVgKD00qHS7ELfm7XT1kelcYM37dW8cdq4bv/TsavimVmDFWmOvct4iKdkKzs2oYuN7qrZSbef1uWFNpbsfGqI0sn8TF/QDREEDrWzt8E3yCcbFhlzL9qs5TRxEw9vEN+RVylXnEjIeh6VKKbm9AU6QH+CsYIMACjE8Vvw+9UHTYZXAoa97JsVxMlVd44RF6qVN8NRTUCWK6wrbkMI24yowBCEENK0UdIsPBkCgAYVtZ6si4TlJaZipgvmvm+tks+s6+ifGev7ymrDa+gym2zj5+Era2kuQEIpXPCRNbZkqa8KaMe1LqY7ygZ2xr6aPWqeKywzIFHlt/qVjCZTpHbCD5cHJYlDU6NOwoCNLlg0RnNgn/BhJUJi+xo82rjr0y9aYcsC/EBApI9RknZpblTi3soQY6OteF9sojd4UqjxoWWR1nebs6tnFR987hEiUh69JfompgZCDZQp3DglV2Rp3gi5Pi/L74MP0b2tkrVjDGd/xRx3Z3AP8n6K3ReR9NwwViZQ3OXUWaw022kPb1cqGKBXpu2FRANq7YpMmeGo1XBACg7Ev2S0AZyCDnCEJhuQitBrEhSLphUnsiCJItYwWOEEjGSHBcR22m6jdoD3kXL5HklakYr6IoGUowQzBAkYSShhHjCRA6OSZxj0IBtowMDXqHTnpUSJQoxbyRIG4lJQcyk+f/UrC2O8320q+T6bx8yaXo7wE0pdNHCc+3h8bSR8Rpnn6vca+2/Cfx0VO/L6CgIsEq33Fh1DdVrFGVYXyPIuqi902yKzMwBOJvCRLPDhhsSvTlVBY7ObhiCaebMmYisSR7MPC8OBMuTVolpN0tOLAneWtVo5PTJd3ZxRQL5UmSkkDPhPmpIIMYog+i8czSGeNk1Ic7SC+Bjyjqq065qiDdIh2h6tMFpcmlGIZWeAuonYv7xIzmBS865MLOdM6HCb4YC0KIPaPVTkzYtDL0Ke1OKeRweyJLRsJh/wnWo/LpQpADaXaHUirOc420EvoYOm0P0LBwZjTGQFXbfk3Y7HrLNyeo5NMAfIkD8EZPTMUH0IwHlLlz/S5z/fY3P5s//FRj1zxVuVKPg999tX1+Feb2x0+TQd3tuXev9H4r6x9+ezPlgfJNW3uEoV/PbsPYUH36/RxXLwFQwPUN1q1urpoRRULOEdevM9HMNC/IMvb9blpt/+O7PX6v7MS1EIn/KD/B/TAVOCr8PpYqG5pz4fFpLMM8wCIytIyjNUw8YJa5Cd99smXq5jgldzU1GB4DEARMxfKzerO6zB9ONyqVrck+aG5dmbe+yV2+7ilxDGr7+92xUkwvJnlG3X9Anp7f3+bCc/+v7hGKEmOQUHWI4JBckBcklvAZRRw8oclBnJkyMkRCYUwJBgOxihjxHz6bSYySfAwTpYRci1WwWa5hwcpwyv1w4VGmoW6eBDDkQFWBMFNlYt6RrBUke1pyC5CHMOU6o65DVOWKCgp+vYt53kFKUkUmvC3sLv9/7oq7ILqXn+a67JlagGv/xQt7g6lYgDrGKguq+CEsugPDlusoVW67wLUI0+s/Cc0RhVb0x3fhX+EwJ31YoRYBxTjFCglIMiVCYYkQIo+AjxihFnzCNKWaIIUgxAYxziBlhkFI0DGXgM0Ywb8srEUaQwaO+AWkqS0EmZlPXgVImgEFK2SWQAAIxaUxyiDBlGHBgAASIsg8sBwRhhAGgBHh7LSD0ACAIcPxCSJqrsc4wlTJLbT0OXNOIyWRwEAuM0uimHsnM0nkulSXwsBbLezZY7deZlfXbjIsIlobFT+Ny06bPUW0YAjnlBEBOMUKYckw5BZRTjFCiHFIGKceUUMgxZZARSNETkHPOMQOYQAiQpKRBTiABKl+yiE6PV5NDhy5zk5hxcSImMZhDBiml/zWtIpD5rQQuoabUjbcW85yWu/gnwC6ezRJG3OCThRleWST1ifG3btq39hMupt8yjLjV/o/3ancP0l5apKHuG8gQYbhdzJVYmxCU/bhyXJyDQprZiyZxcl69Q7F4jq83iCw7ksZDcMlInFJwmMMUIiBZeDjh4TfkckaUAhSDrpADKTtKc0zXW0MyzIoRaNbmXHufgyYZlFs7+NexHRieoi6W6bPMLETuJv87NUWf9VoBRWDEEYcqY9K7Lz+sL39HHfn0JsdqojuWzSdgNAXE/iD9+y20Y73WlsDDkNcBtNktS17kMJbpMih/y21FUMQQEAtvFoCA5nApmtNmPD2esuHn48PEYkDV8jyEt0kVuY0kgui/cVCKr89ksm9f/ribH3AexNMqTEU24bsuHUbDb8qj+eImynky7uZL5mA8bouTLthmjn88/oo/bfDF/kai8+u4lnrq0hzttLzEc4vOi9/no5sM3NbzJ6husn07sPOvoPx+vlB0XrmmbhYSlN/HbxKf8PpOH7GshA8qFm1fCYP/GulzcyOdzHLyjNxhCOmYR0QEoDCQ5WZ3qrdYCEaLOvKbd4t4GFhhbdmO/C+5UqAivt7exyqdG7O6VAze7XwfmjciWfL1KgNYfenE4vFfS/Xze6rJ16WfE6cgEQUn6H+9d8Z+QcTwWX3DdQz3661zNwPBgS1+x0EnTUUgdPNmG8dcpSV7aF8hJKgY2VIwqjY93xBt3faeq7aJ7zXXpFpRdR8OGbkNka32mQl2v27wXLxJQALhTYkHLOJlT8Cmw3L3JjcS0klnxKfWSiFhqfmH1K9RSQWIUDJ922YcLYY1ZjqJ4G0pmZ3awGR2mLL9cZcClSLl2RT87qdSkPszPoOyXp0L3K0oXEBDxbzUpPi0ajNCGW5tLlp4qcopbGks8rBJiUFYJ9aEWEBbwL6ieTbp5avdAKsYnT9PH3x6rZdj9ybbn6tM4lUCBPWFc9w+ENvTtGSzkkgvNRKIpx3xKOfk456veGCyHl7uOGw28FprT+prFgyMtjm3GyScydHRlQl7NlSCFpU6rhkGVwHjuN++JRRiAjknlZlKwTon4oxzjZRZq1jbvFTF7KcKlBlvvAb8vrxQvlkSNhpmA4JYxAKpIqYwOLl3qz5Ck0MY3q6aZx102KOo8axX2WnjGw2tryBCKIGRsmo0aGwv+fGQ6l+ff+oan8HSYLk/qSTiCMgn+l3ZGQ2jxggTPcqsQba5Jmc/h7K8EavUj2E4o/y83bJq4W7G2yL1OrUrId5FprrpxjFqWYbMxB1YCKT3s1uEKlFAjvEAYsaZCBIoBkgGtd6sbXRArEEyPX6fpmRvaJVDnDvWnU1Ruobx7V1IwS81AHUVEEdQZdYxGIQkqlJiov71S14iukzko+CChceYkcspMw3WJcmwW9PsOixpjBnHlFOE+2KjuaNyhQrEmaYBV+m1WCuPeP3DVGIzmGOQ6jnj9LclSclfAD5+5dVPn6Sfa/K8M1O68DlaHPrBbfymoSlljmROHEWYI4AyZXFtYlssJMFcpXhqpEg+xYQAAjDLnFwfCS+S8wyBWJBYZAFwR4N3rCbRu35xvbU5FyinCFkAGORcpyRCBDADRhyUkCaLcDWuiBLe1cumQRBmkGMMaRGYE+hZRwAIrKhBTinllJIe2prd6yEUlZlMrLGWWKh7Q5czI+rl7V3lngjM7EBP8V3mpINZL+NamSXskLeXTRsL3Ps8nW7S8MXub0KYMEwh+uD82kcQYyjGxSE8gLwsA17Y7OUuHUvnU4gYQgQ9DAnSsdEwgr6GKQKQhwRQh1RU3pKLu1ymqF7jxGuSUAKFHTGCEaDok0swRUzSmQ5OtUCQNUrYulQ1+2IGJGWYUrDY0gGAxJABOYMII0gwOJhSpJRywZQi0fRuKC55Ik6PYWD4z5G8jsuT8MOyriOZIOtWiBSxCnHpLJuYr3XVpC2p8XG9YFwGLQ+c7/yr9gnqPOVtmp9ghL+LxsP+8Xwf58NJVEOa31XxyxQvY/AIZlYU05WwGj9PDqyrP08+c0wOGTXlt+HJWabT2XNajfWQ6HjVIaN7+clEBAvvXIIZwgt/ROAKlcZC4CMFjoYYMFdflugASDAhvknXJwgeyXgN4ObdpwNIYjVfbKTr7xLKvU2ofxlX+4K/mi8AxR4wzrU5F18HF78BFI+7ztDOGsIKSSeDdKBc2LlgvpCM3/0Q5BbHUO1l9Ai9kOvmuhQOFskfD9XvxO1TxG0bABeJqLfaRciaJ02H4IMPXzdwPNIdMOMBvPzHHKfxp19vADmT898iln8otxjn/juM1y92Yj9d04G8u6erp9NQv4tP/u1d5XJ+WmVu58yPGxq1OeR2+FwEc/o5MedHyUyVF3w+rmyQFlziuxi+kFRvV+7lC/ztvvUp2CvD5QNmZVW3P59i9wEuBIyxCznaQCEEGGQBiloTgCFY4HIe19hbTRFZaKAILZYkIM6xDZ8KBzV0HlDorqvdfDcmSNjsCe1JtcCrQKb1Fk1qZoWF1mKM43yUa44DfrODmUbXAUcxGT422ZZdtJzDZbbOCho+7fH3nb/htOivtUyO4Gq+YBlEMAy8OMlHCXaHWHDodfLhuB4FPu/7z+u/WnTgGgVFm08YBkuXWEWM4Lvq/aoAPula3xWJugi6jF5pvdXj+VrBMidng4CeWUdMKneaLLn/+RpuS2ZVOpIvnL/8+jrNr8eXLcfw1e20eyJTulSbS9Zk2nEy3+X5dCXWeHwmunqKY7mYIUNh5+Av6q6Knt7dGKpKbgXBrK0QGA2R233KdshZ1lXgNdNjAIvbdvZDLSsb8R2DNkRWNrNb56PXp4Sxh4bpDY9uzRjofSLv6AKqv8r+HTWXAhFSXm/C5j8gNrq7i//TBxR+iZzYsNEAG+RanDEMBNmHLpcA3j75adejTBgN9ssjhJkzcJLkgPOR7Od364B8nl0fQzgN6nxJUcahu86kvp1zkCJuELverIqfH1YyLQZfJ7hYsCBawN6l8xVyyRfPE61KCjpfWWWLCnSua5JLNEZQAxd9Ao+Z5EgqFFDqgShRvvHoShlocAiGbkEgroDAhU8iNbZ/2PIrhDNOqh6jBbdjBVgZQ8qMObglDApe8GS9SJ39S5hXCRCJ3GWw4HoDkrCBEt8K4cPSE4m6rksQgxT9BiEE4yUmQCC4RCWK6CdxXbAs/Nn7/AfrXgtAvDuhNSHSn8fsBbxIJsTvGGBo3Rs6KZqdj8Pqbh9sZNoN/ElGPKvOanEVlFnnde3HOY7YM5VgMaxGnBdNluqsD3QNcONknuGxbtfyKWkn5syUkzPyvb2TpGG8gjU9XjOjdIVYciqfLAa1tqTf945zDaN/r85pWda9Gr87QZsgZWdwmO3E4smPYBTNggreL+q8LckKniCGSNMQNcIkKdQC4kJPzdANeo3kDLYqM5/QTbTlfKVygJuWvqZzvJLWvzKpLb3lPqq00hk/4iuLp1vIWHwrwGtFx0UfN+s+A56KE947SOLr+vlZf018EkewyLyNn34MGzLWUSaI0IwBHhE87jgvvyf26f08H/JdYXm6VPcmRgwh4d145UqIqQ48jatlPv5zFxmyjSKA9Jdexue5+PjiCXFsfGFDfXvIenCXzXT+si/L8YU62M2vn7ZC3Mrny7kv2qNUEl/GothUZ4GWq+ggLa4KsqIrwOgKZfC6adoV1oNrJViqEKuHhuo4HT4tM0Xm8uRYiHXJpEyADf3izTCCp5el44iC2MhR92Ghq2vG6hXe7wfDOjD9S+pYidSGxGlaRnlfRTucgPjqrngpBESZEEpahNpQMFhuKOLj89tPIHqoTiqq0x9hhAT5xaFSr7BBfJPmTB782+uoK20hFwGgFEHWVc07mZbXiZ9pVecfncMiIGTXBaD1qqrae+e8QhuWXjGeULsCZLXq7pp+nhZ/2XV8ug7z7CfNNoSvi+QdlZQFHDd8FjOzly+nc+nBLTMh2UHKAj0PG4jWnf573hbAkAD5q4kM03xZNPEsT88GSdAi3KKx1MIiQ1AsyOKqEvousb+k02xBCtS6c9tgZq+OKGa4PXKu3zS6N0Ve1hgkE1/t1LA6x8b6mjf0Frfmfx5rB8NpduNxzgtf9Sg5E033eFMoBL0fegjCUI+YmV6rNJXdw4bMTpXmkoPB8P+mLEcAdTGWlMN4oPl6qWGFrgvdnH94Rz4sVOjJuBZGgqOo8ZwLXCxYnMKD+f3UpqIP8/u9jejMpYw5hUXgEc1wLa8KT0CvYsr2ITsINr8Ab9oilXDG7CvwySzxBmlnLC3qONcoQJJAyFFZtxJF66xJW3mxRz5v0z8K8vHBAft2SR0uCJPE2akQ58GovAKP3LsAOYDIkftqGXu7vL9fxrirn466wPUFhr76Np5lR5JaLT9mTKmNyGxEQcoNoji71JU4ETLiynm4jVwVGJDmq6Jgm4I55TJDEOKEAN4RqFfQKyKZuew7SqsUitQwdVNQnnNQJ8FDVoMtGwD1CZcFcJ46VwfhcrMHyVhIMAx51cPUlSZYAMI6PnISAYIgJeWc4ZjeEu8DAwf57s0y9usc6pJUgbSXu65ghIUrXJOkuU2qxGLPEkAEAug8EqEM9wm1KxcEKIkrkhOrXDKRwvZR+Mm030VEcMjZogWSzAgigPCqBJeIWYtyywrgnB36jw32RK05BZFCkgiGKQGMSUIc+uH4IVpJPIXMiloIJJmkBKQQo+ApgkUyCRJGseAwJOgzAebtHnEQo8uY2idMBYco8xAkRRwRCmCGBOWYQfY+lggDxIgjkcoNYKsQEKtiLELDuGAUoVJnlypDrE9syQRBTFBOmNC6Om+JW0CBXPAVjySlSEBkgN4gwVI+7HmACPIccyKOjA4lhsDNBNM5ykAtZGoCAzHjK/qaQ1tdVKFniIUuMgzBU05zSH74PsThWsRnXIFzBxu4AGcJTjF5OC8G+4SGEEMmJhkUM9EkAU+dIikub2EjE/WOkTghMf7wVQd8wDjZHEsCkpvMiRUQhQRylf3EfRqAjsHswbUPExiSYgTgYXzFtBiBexE3t/NIoEA0xBBliUuYnUvzWWl17zXzPk+Jzm7XZDf3Gp6tQiiLFJcKUzLN0+cR/U2L+3RSzlX+Dr0Sat1zvqHGEo1oPE7jv7S/EPPRwOzd3N7fP/8rT7NG0WFDRpGP8639TysVbDmg8tH1TFnLPvDlOqcGHz4XfPjOziO4/yYd1dG2bjpmfpve1FrHu+KEPuHu+k+OYYQBeKIrqYnvBHr+X3JLv40a4mV8NN978O05LL/nvgALFOz0q3TC86NnQDOxKobvXeq27PNCxNdlyiEcGnd9mvLmWXzP3CM4X29ap7as//L7tYf6Nenf0MnRsmQERNpE5DKbxh8TyqBBgbNPUTwsbB++2NV4Rw5feNecgZDkdRNBC9IRugXfJLFWsaLiVJ7+jtIPz/O8G/74K31MP33VnMbNiPY7fNDE0EO3xujaV4mJW8ee+momjX/ZrtFI3m3s2RJPKJDnPTnfz5TqaZcuqxGx93FIeceg9hEBEpFN8Xpv4FLlpYAVIODL9tKVqb6W0mU5cIamEEWNr3TnrzC4sb2REngyYyDQHb/kaRVPbyNdYrnpQ+D87RYQSHQAPdhcg559fbWPBTfVWosDAjVFWC/4L/k8pIuy4o837bY1YzzdRoo3bsnZozh6vWouKPnyVvcrDt7BZEc25bBDRo7kxdUm72A4r3mbRn4SwsoG6Ed0Nnm7zumwjYkh7Sezfds1sfaiPKMHMjS9FHHF6lPmXBtcnHe7FwdaHL+f2zSWhQ5rIYK+imA23TwFJhpr/PX5/O7SlXVVAIqdqTuSokcPYVjEWpgX2Zi307xRBhpaU3XG7Ly3O6IbVue8x/GCvv9NkRhdiisoHw6H36AFlbYiGQl1Jg15NEPESa0N5BwLWOZVes79dcs22V5PCNoGzWSlQ1N1AUrLUomMrk2EuFbCYft2E4U7fiHTVG/D0hZFAYFVJ8RzqdwJN0UY/7zfiq3KuCHexw4DKPWFvZ7N+JsqdmNJSdnmnPNUuzmmh6orF0LWmzuFgIS3ypF1uOzrqkFjwuFYSG4HT9IDxlvaxljbCcG7aeKpzcDci8sRxVBywtpKOisouZXfFBQgtyTGfLkO0K+Xbz7mmViWqOMRVX16BCKh2QQxrJFjsQrrLeLkhIdjwlPUb3syNtYj4Ypl2TTsGAJdL8Fff8EnR3Gu0uHZZbSlKPuq9JF1gmWi3bRtjzJdTkV47RBUuIqL2yc/n6j+RGV+2xJgbeZ5SoxAzrU1QA+rbKTGknc0WCerZD3IbgNcCOdjIb7YWJklNoxA7/YFnBck9+VSE6eDV/FaSrgiy4z3hFcCagYQimVFUIYo+bVraeFcIGsYAUGIs+LzKo8CNVvSX0Fc0qrksUwzFg8BFGFkQl+r+mruYUTT8uWXTcD0VAQGgqOMXSNLaYjMYwCr/R8rMla8PkV71HhuKjN/7/5u7YNSfuCJu0uI4r37Lx/t8XqswW0RckBxztOfi2jUNNscs9eJSHMGaYjLGgWYQAwgRo9TRiEY517ultRfqFKlinxxwDvTG8aELBmOlXPScgA7n2isIInKKJUegAFuzjmiMCHXdyS6Bfcr51FRCGdA5eM41qJLnzjSmYpoYwmpDV55CFeXRHcWQEnmvgDP97rQI+39yi8mhxUaXprDA/bV9e0dpeuHyyMDuKzp8iWf0zbMp/7bVXkF8agP76cK5yTxxX9Ng0qSRCKdLpJZgNK0L8IwnCAGMxcAsSXYEVfmEFPGCkNjVOlDcpnta/Jn0danZxN/7c/wjbZejCHoOibMQErWauti1FkxPtbk7ed2ji//x17bH1R5CgA15ezOaoJhvfmXQd3sNjJv/vxpTWQ2hMD2e2CnDxlJpQTCy9uxNfRwvO/cRCrXD+ev0WPTDiSdNvB6PryLGzCYJd6lauabyetz1/KV1Kv6U1ahST+N7PxSowjRo8VdgrwItKFxziQMO0pyyGk6+4oiM9+Bfy0RgWUaBQwIv75rly9JAYmf/7V4X/ajNbHG+gl8JZG4+VxmsTdeZP9fhFDPxW4+5G8W+OPgQQY+G3fNTeUu9vb+hbzGFD6JkVmsRkqfEmyWqeHX12NZafdJ+npVuYq/M3x1iTmw4jHVAJFh3b0NPMuvPrgotw7Ulmz1xl2ON42A0TXwHe6v7x6xK1Jdrq2ZHx6F9gJ+q741gSFhtYfvDfiGz8V/NKRDVa3KCbfFipMA4xKCFhXqfCpbmQ/N+LThJI9p1YoUjl/uJEJdwrSuwRVKvy1te7eeeTCw+FWycGGbv6EAJOQOADMvoBN6hGAhGX8OLFavN35+XaGL0txfOIFsvu5YTzdKJa+HcnVpcExAfAQ9BWuerCc8FSzgvAJ4kjKCmdO2ZHhtJGE5OU9wcBaVlMJEXbvh8djVBnKMt63rsStbE0O8qaEeoiw3UOv0UgWKah9Knts6LZgnIQlBalOWgmRnsiMM1SWNniJC63nmI45+NrbcAcdbLhGIGsV9FVHOZMtCIKFlLvOWZOM9jg/R4IRjgf32vPRwYiUuyLpa7gMKYk3VDF1A9LKp6EAu+34jlQ8GlGqy78PC9TVIbG771wJhMn8KnE89czxlApySVjzM0YEFQ2+BhtFZKGz2Ze4hJqADDkTP8wyReV8nN9lC5EiZL6FzXi8rmjOPZb8wFPoi9FXHzwo5uJ6dDyXUOBOs+uS5EskHZ1IKvcGQA9TL8k3f1NADTCBIgXhlSwvDPBIr7TwVaVHIeWjDtp6eV1NUPKKgPXJP783KGVqyPJXGZ/9L9KkHSRfcpVAE8ov6dvJ3+zCmDQ2kl8w9I4xVk/c7VNcQkkMNziEMInIadnVTmnGtVJjYuntu50tSkAKw9tB/IrDE6dLj5Bs/LYmx8BKv+RfxeF2vmL3O2ldp3gRFJT6/SZTggBLPSX9R5Ovl4qwPTTwhypcFrebjx1fozfm205d6qjEaOtVrO61jCIBmEFyttAGzgxZ/Lndh1j301F4d83dsvVmP8xPu+zVUqwfw9RUSWlEH4tPtTU3A2r98BVjQ4jeM4oLUpQWjR3tqyy1TIsp5k5rluE3H98LCedeWh1qVpXdlFfXnv+HULYC9XWx1wzud9PTDnh43eZ+Hnb4K6UjpFv0H0bQ/vzsWw6sARp904cj48x8eumWrTpZlnE+fyKaBf2b19Hnljdu40B4qlNnITzm4MoxNq4YbmleC4jt1PpM2pkHsMvpXV+2b5eR/kt+V2Y9cJ6QcOTfnnwB8r2d3ecB8XLHQXybiXL80rpXoaH1FI5zv/q7eFNmBk/guw/mw6DUglBh4QcS+7oqVLQrs0ZyqLOO6mAPBZ79dOlQAiVbSqTb5MYdIRZhgJVPmnVtYtRtqcBJbselHBJJAGAEvDp1Fltk5Bdqrk8hXnb4op1pG2URVGPPN6dItzRQKfjj3BUEpr3KgFCsSi9KK0kG7LlPOHU14ItbY3eDer1WkjWRYNH3ZjhIw6kFFlEqHu5wJG2p2Ksd7ol7Y65/7ypECdje1D1oHWBM0xJUkDQl4sGWEWaxl28DrmvQmHWjT0NDCaM1cIL8AkJkZ50w3aZXCCs9Ycek5cJk6QQywr7F0U45pBGQg1cQ105adjNBjxVI44G0Vr9zH+bTg9TnmN76G1//87i11JvmJaaF5broSKXf8lvQT+rnZ4lPpf77jvu/dqnUTUEt7j1+mlTHu5f+3cTutCMGCpwj8ofN6prgBF01CCSIY9u2k6dSKwnza8xm8tqj6UPzhPSu3JaWw13vAPYYlJPWUJxW+LPQVAutFiJLUpGSXoSVM1KGPyU2Xyn1+vNDr4j6MYu1ytg3H51XwULw5F48RDq8Y/HTrgB2nGdqJJA/LmIuhbE5Do4BAcksvei+THdE9DKdO+nzx8H3TNFvWv/LryuO30CFSLInliNjyUFx3ZFDEXw+syxcpr28rDlBMeRmrOfy1oazre37pNsi/hN6QzEkivBoTJacdeKzAWVDvAWC/yn3j9uuq6/iMO76G3hQ72uAfZi+pMWw3/Os/fwPQ1QwJxlt4XX8kJIv792Xi0QIFriK8bBDHW9OH0gESXyL6DTPzeT0Moia5d8MrwGaS3+pSoAzQwqrXcu2y4UVEcPP5ZYUYLQmLRQwtCwxlvpn7Ih1u+OOcUsWvJct00hQ65+D9wRloM8VdExtekVw9BJLvMmQEBJTQTRF1klvDaxu3FVsFVWWba5i8KATLS87XcGuHyvkP+VzOOpcIcni3JTpB9oBgZWJgKd7gSVkKflirIN0beb5zgd0aIJNsUhlJdys4z6YXzVc9FtZI+p405X91PQCoyiIiBGIUPVvnFCviLIqMyx24aAoJbfGVrjpiohVphi5zeHi6L/K2WL/g3Fb4x75hbEP7M++SgMtfFPGSkuIcdKSQ8Cg+hIHVEwV5K1GKGQCYQQYpxZxiJlWy0fASFQBFmyHEjEHR1DxDEFFcSgr3WV235QrIIiJLg8SlWgOZnp9r+CXXnlBWFjLSDO7HiW3oW7Pzd/U8iDYCyLEPAKOa1AhikjBGgsECWj/HqgJiy6UuRGYpqFjOXmoGA4MF1QJqTNt0Zl63njLHMMIwP5ChQGbY2suK2DajNqjkYnN7TcwKHvqPMtcpl8TiJTRA7SxBjhWH+6opAB6UJAzHGABAMGUAAoogY4oghasyWUY8ZpaSqWhigVrSC6pnhONcSKalJ0BKr4sgwlRmyAc8Hpm2Ckw3k8waQmT1UmMSGHCjzEUGUQYOAYNUL4UqCTgBWTm0zYvVjijkS2lVvWSNyub17KFYaErOTjFUoCLalBq2OWOSMKFLztZT6AEW8InbiHGXSQSKWBv9240sPu3369l3hkBtzg4kVxJtcOAk9G9fZRWWzVb+oQ9gGJmPGgGMUoDEphB8hZkPcQvT4lKP8dDIUVCgmGbxpbX/+Zdl+xdnGOuynl5XEKfpLVZQ4xw7SLr5EmYpjpqU7KWGE+5CP7oZNff9NcxzF06IRAqyQvYWkRnj6zF0W4gohhYTFtkIh2HxRQGBiLLxw/hJIOHpYsZK55G9fRylrzGMIM1cMJkhWBxb/WAdNBknj1f52aFKYAwfgroXn1KRphKcPv+3Ee0/LX5u5sHW78qpu85dhhH210DpWaFp2qP5rX3ER9OYm+b47NfXupTD8MMDPWkHKGRh+nlXXi/ldhGA4svT39xQ19CcyShATLq1IU/g7biLnts/tHxam4Ph+eetYxHnB7kQE21Soje+1pk21C2kFpbIXK63LUwpBD1cVbLT4gMwlqzqKcgCbj/tsxcJV6vm9A/vdksbDMXYn+c8c0pAscznqv52UjhIwJsAYuFqRBmk3ZEJdqegLHDZfOfI1mqnc6h2Fu277jkj02PIfklL4iEI6N6ZAd+Ly4usMnSQJ0/b8hTJXVlge3y3aUBrDQF0LurwhcnR7g3BARLfETPV+AICcegi+B7gba5/F4dXwUtKPAqpudG2LBoUdKAZWOcQADDNsycVcxIZQGAAMcYE/EmVPCV1/jgP0uNyTSci15ULb1p/Bym9X7EZieDxxHbiQFMcCrch6zxSrqp46piD1sDbqHVc+lLeFi5tiMjX4peTSGOxUbYhN/bLbVvqpl/BmT/GNDkFGTYbtugi1gR+HKk48Zvb53bfAdKykVBOf4PYBGe7L1XHeMDvCawFHZcSH8FHfg0bOPuGX3UbyFcQ5HlAzsr3ceHV4mq35ij367KBgEDEQwYwI5ASECVZ5t+3GTn+x/bPo7dfV4LCS5VzApSwI2ydyEt/oW82n8vxYsrrymtR9peVJtM20WIooCK6kun6pUBqRH0gLiEAFZKTOz5110b9RIFa5KIudlFqCQDtqwhBmdQ406U+SeSjqdCi41D4APW5SEk6Gis7qZbFa4x9Y4GjjgN01j5UhcO2IK0YLYVgmdwaIT926IBCsdCZdfN2j9V89cRcHrg+l0ZC7y4T/tdiEIPlpridLjGMW530t+WFvDGhSCtDvujYVEJXxUT1FYgc6Sqi8jmx2rrY0Li/bNCeJdjbW95YVtbroAD2y0YdyN4Xd3lmhJR+KRvchYXoblnKjwNy4M5aJ93pyOZ3fPgZwofKWzvrrIdr2cF7YFiSOOPCOg+u0AqMfWTtN/b02rK+E+K4cI5VvP5v1ipDE4y1SBQ1jNoExET2pITdd9rvc3eV1RZLkBJw82VXhhVlm1vzs2rcgfnyV6rudZqq8Hv/sivAQQ87wh3B8k6Nh8cuPu8i+LqelIGtJuX5Di+Gy9wYfEvmLbRg2dglrdBT0a1ZWxYewUVZusOQ0VK/72KRo8JI4mEFVyS4RSpQYQdodResdee0l02Jx26dmzSGW/Dc1jZsNltBkZul8FWaoVtu++mG1vZ849cEPsxkawsxU6qhYRzWOw9jmPqbTAlAQO3r8CbqW3gpb6k2afjzerGVD1vz2foT25RFFisZX38maDeYuQ4PzBXv6tD/9PaVMJUl4+u3IJPaOp/DeMvXDC1bgRc/sdhyQ6D3s1/sh+u7+5bpsbIAhFxub6OrpHiYFgBgzjhXdfXegQow2frpVkMIRESZgKyFi7gcSpkw4gnfDJsKhX5bzYaiAqoxw6qbEZe+mQfS+s6HznCxclw3bidGtNmhmMPCL0tN1hjbfvaysIhYIjTlPqw3ES9rbloWQy5grotEQMKQqBUjrH1qcQgbBlj77TXudv25SEyu7tbUFqqp43XcwDuAF05oOlSrG2K0AusOqIktZqmB9Ty3K/c6zmqVcRFpC2FIPBMYfQX7jaiBxlVZEgUpy8wFV7QYrpPwOps6+LwEKtgCg0jTJWmoC0HRpQuA2OM6XDZKVxIXGkWfmXG0otiHMgGaKEIViRzQacthSp5x2jrSJn7Zhut17VI4LXXWoylWhHlGYpixgk8IEwe6lCJkcEpwVSxHWkgdB03KOxSDaG1uxGq1ZjGGQiRcIegoAImSHIRisLA5n9Tq6sG00BGnwc3VlIvKTwPxBswIZ2c8tTehQssQ44mfLzcQ5cnXadJiTpVZoFnP0M1gQSOmF2YEGwJsP3mo8IlBA87FEI2FKZHoOQkmi2DY1KOzBKg/Is9N7qGMIsgFAPvxVUPHsIzRCLIc1hGFCYQh9NfqWUK/ic+mGetlMSIqUX5evAEkqTHfbJcefId0PuyipFFMkOxO/9OvGVXQcXmdX5C2/vc3kCM4H99JTWCyGnkdNwQMOk7syawhZHiSzBVhjA8+nbJ3CbccXfp1FARfpTpyqbBWwZM6Ty4trBTX08R6p6Jg+DxKYFVl6+aN9qvg8sSRBm/ztxzqEmQY7wujSgOuMECaniQQVzo6cZo2kWsXyp8xNNzr4wXf1bAfgYHuAq3DRfSL9i6iN3SLztfHl5gjZRrv9yvzJyEImacAT6T2brLnL7sWR4nzdu5L/537cbvV8Oj8q31araaxpJG6A+OpIQK8UUBJJ/sQYkV8Y0WbBoaWVoo40E1xtyY5RhdC3KNsG+RSioDx2hX4DYqcrrSEQdPNJjgbcswEQhBmjBhrNt+ilI01HiCWHxIOu/8awZDVCeJml18wcPuV/JricGI7Ap1GNsoM6cqi6AL/dc4kxMq5iJz13BhzIx/jMmIcEs6BF1WkgG44xjne7RDOzkQIso719Uc5b3ZFgNOXVNp5yHxyr5iNLg1vGP7ho68WWkeHKMOclE14tXMd7Xw+r2Si9DlL1+ocTzUL7LCtCwlhMhnjDJNveAr16HbUz8MKZNNwIwuY3FJy7EBkwCWIEDUJEAgixwTqiDiDCYKYCM+cZBygUAq06Uxgy3XJMEYrizEAMWCGEQAUJCgYwxB5Qh2ZyhGt0ri0gDPgfR0z8p4/mgAgzogRiiInFMEEsyMAgD7DSnDuAQMeDQfiE/ALyiovd+oZ6vqDgw4IlIpoYc1Ixo3JvRlCCkVW1nZfeVG/Xn0dG3kGu6bT9sjzFNMssfRRujeKK/9sEHW6Blovav1Gm5n0ZDAvD/CaSznvr2e39vFXYapkfInMcethL1fVGxF2kTPWYxmQGMNnBl56zEg+SeiSgTT1nUwnjVPx0ZwBsQV9bdObKsIUuICnGaQTmVQ777emv4oj73Yvhw1PFGoZgU8Tt1wIR24EnMyTIXA4Z5Byi8UrhxEH2lyioINNJYp9JDFiSNQAGkrA27sWTiWDMRfHCod6qz0lcek6No7XiQtwmN8+fAO/L5aG4nidElvHEPxwW4ZUpFTBc/Y6DsJdvyqIQqAAgQR3OnQdgYigql9WeDx/Df+JSOM6puIUgXM8D/MTrJuWpR7geLqFGbBMggu5lzbhpcd88FaASgtZLT8X9ijQz2AgXZrmNXy14WxjWlX2Gou81KcFjqLY148bOY5uaKC/SoMdDrV/nKc16APY+LlVIggSeV/Ri+1IoLRInCOcH5lOW+6HDZS/nf05MvZhaym2T5/uwRF2uz1juI7krS3gDHINyM7NzQyAOhXfdHMzzJ6qeQGvXb4AOzaks7OtNjm4I2PCaWAfBQCNP4tkcyxT8teXbYYumf7bMs3QGy37mNwBD5BtscfpvFkVswTHAgBfp8gb+gUAgvkKgIxERa/qFaxFKlusxtBGSEsXaKoNuFbAKhE9Ke+fv6lgzM6vCch9tRU4mvwVCBAA6BLgRUVsLfJQwdRhROCxpSmgLx/ZIjcAEVwaDonbJVjmIhsOYDEzOW5KPhyJ/pAjG1zs+ol5yX4++hYcX28dNQkr9yw3+GWhxlM7T/5hnC4QfGjhFfsw1HEacQGwfJIzXAaUqASvEWQC7MJcVEatF1meL+G4XjcKr/4oIxTERpiKt9GuuiQxQUjPhwWMVe7fm75XlZnHbbvMUMhV/HEqkr+pewzv7oCByRkKPPBoW8wMRcdShDAgCBM0hLgrm52+haYYTTIOxOjuyaSWRCkAwHvgNyQsCwLhrZ/fb/TEM2/pvFnWuYJHzqTK2WeAwVwvye1gOjUMTLZyw23Zh9XUsjOteFnngA3aNq//wEQXwXNx3cNYr4WaM2ALyin4KQ5kVWhfgeGFf1UJ/8/voK+2IT7QYTDWf6VAtVyDBwYRCMAPVuW2WiKPucnEDLlBca777absd4WA14rcCO+cmo33S0hzFzZJv03UWakzoTpgkH8r30iO50Mdx9XcY5LREkeC/eW0BKArvybjDeJro8KKZH8bY0FpeeCqdoKxskXlL99eAXIliEdYv5sq0LoFu4AiSv7nv206+GXBoPo4CLdJisC3fYD+47X6SC9F8oub7vBqnZc9WpFYQU2arR6I3ZVx5znCsLiJ/YNIPgNTVmqIAAA0lEkGoKlzU0myIGU6CIUFLjNW/AASWgkrk292GaB7bk5Ph3U3vshGDy0t/U8d+2X24XmNrufZBfqeQUt0n5pV4Az5jfPAuiPbHnAwPrNpRS/PjdDa38WYrrt3/SfM27SuxZsliNrLimtfcg9qEkGDEUkd6l2HrUyc3LyVjlTrN+oIq+fOT8HsobpUNY+UZVoDObwICRJ26zoXOe9qMK3E0MGrqALGis7XmdFbrPVhtFgAzxVZk/kbk2owWEtdzE3xxpx8D4oSZExNZOFUZTfVmKu+QFwFeFhAkQfyYF5k65Ibaf1Q5LRIhVTXHQaavAFE8kuaVnhhgmSlOKx+bB7yj8hg/f1/T/L9deZfV/baUgzt9S+34H4fkNrwtIRNWrS7VHBTDnF6RyLedoXp1owkNqd9IuW2Ih8VhUi4g1Hb3axLQcV7oqfEmoe5J3udGSe/Qsminq7RfSAkgqiAbqF7Yu3avZ6krap+zXB8wZgZTf0OUagKHlzR3sawDdYBEvOQNw+QsBSdyRKG/X5eQCAKOVBm6K4drZ05bgrWFWiaiFI5SSbiljnYdoRC+FnWBjLwHMZYlssN5YnbjOsPAN8uiLRroXEtkB8/kBJxCNBia+AiSmH8sQSeAek65Iqacpb9JsIMwY0AK9uscXARMhIbO+ZIaYlDXbGysQEAbs8XuhO0xCkUQRMhIaAoxdjkkLJNSyVUqgveJS4QSPuYbfrC7iuKYeVhDDTNSEjjGJoF6NB+xSgBwVpAswGCZTjrN3sN9IpSiDPQP9XRAsqeL9GDXEXsYsRiL+aWRHGT+OCEwk/Xu+ZCIdfGJyci5tw/v7V3/uy9RSWZnfy8YTbHFud+SFatxkObJ8N1gQQGkxGQwKwNRPJFR8S6eY7A6VjRhNlyiTM43xdfpgzR8iIFnGX5GQS4zWoR5QYfVQYF8hYiXGhN30w1PKNJVCsizm+om61Xv9sup3NEwi8JzDfGXDBJok9gmjDCxklEwqyRADCEbZkNGp40x5/PBZOFMivnsATDMycpDsMbRRXkwT82htRUD+9QwHQqlLMwSEfdkrPNV7fzA+rvQT//MN7KiKWutC6BvkQSr+54l7xNIEvAZPI+nXt/A9SlxG47DBgcoZ/TwGgO0vSb9fVTTWeyENC/SXhRdvjqF6wXx/xV/BLR07drrI7uGsoiYeQiXTBSr+p6cb/cXtCiXIOasyMFTfPzxO/dhQGu3WKQx04Nd7Iv5XS+5nbuKeRtbnBheTznNX1uCua2UURYBsPyLEBgADk+Q1QGUHoshSVu+bmw6rHRqMlqgVt73XLumZqqGmRl19SRWMCc4PJD/HccpuxlOPgeVQXFxlZxFjPwzEZsydmgNMoiwXBBQrqDozSDEvRez67QSxJCgte3mpg8TZNBiXiG/cJxi6Z0UbavrtkD4GmKPpApwbSxzyNjJgeo307c+WicTmOekBcVF8npvsJbMBYYgVwrS+tplQIbYHojVLUQQ4PIjuSBT0xd9lnY2VwyaIi7PrAFXZZ1NJAM8yB0UyLPS8WkM16U3JvaZdOVDnqWjNBlvpTEc8c3C53zWx4ZxYAk0h0SWAez46nAITAgwXRuRpDiXpuMJuZao2EUQjiVIQCbFbjOPU9F7nfuShe6YKdrZwgw49y5NagY6EO9T4el8YkV2SMKKSzm8CmE6Bc0y/Ucjt26j7JfgcZZXI0552NNsMDoU8NPcwDBTd6bvGqhWbudtOc3c0ER3qI8NrCSbwY1hEK0sscAUkSkB9KdH8Nc5gTnfnWo1zA4sgxo20L74LG5pebk97VKzchK8JKOaXEPLBotm4i8ENklrRpuoUqaWO+B8RJjl8qPGE4ygsodjcmRxHlYEba6X1ZyLjL/vG/G6EKTr6CFRd241l8v2aauQroXKQUK5UzaBvhFJXTKrYuJ0XwPrychQV2ajbEl5kLp1YpWecAYe1ZYQ+5u9UV8gBPDosQZMyrkyqteENiRCRFRmdHRcXnPU+FZawkt5JAxldIs65Kk59eSNVoZhNFMgSgGrCqU0EITihiA+HOCC9ySt3JTIN8u0yi58WgFBgI08AbJE7hDg7JsxjXWAKTOG6Yt0+98xJSDuWZimmThWo69FjzRbkkD7sQwogAUiRevcEFCSFcUib8+iAmlXO0BMIl7R6ErYaZUM3h1PVQFjxNsfEkov+J81okIWYaMWTRZvFPD5XXpipBTUZ8yj6FodAc69LmWtE846Jg8aUl6kFbhwLpSVxHUYAZFSz30SFM003KT1wJGBwmddGT3lx7Bx6ougAoosHawllmIQJVIxRBwniwloIqAhdEtinmGRcwmASTiHWC4k84v7C7NAB2TtRZsxQyEZoB9uFqSnfCUXsWmF0exbzMWB5pi2+RrhReO6VojpKX1KKV5BWUAnMsy4C4XdRU74jXR3FWU1DDl2rlCL7XNTsgAqzhiuuaY7q++UHxGiE3+lCY6EdLd4NsgNkaIkVfuZr1U0SdR2SjpqIamX2HI5CIzQ4hqi2ENqC87Gd+GJNqiNcBy4s4tJ4pGBlugnSPRwrToklufyzih7CRyxleCqwllgAwYfUI6YVCtqiah2RhsPA9tYAFRQeZMQlXdwESlJNZwBY03aayqRiDBHRYuKhhZ1ongiLLLnBbK1FWLJhETrGxKTJditdH6KfrSpZIZmIglG+YhJ2XZxajpekeaJhPdOhuDhKQEMs8qXhL0KEHgmZ+Nk4kke9xaxwLVrb/afo4l1Tb5pJObBoajCEaGUvJ+OsY1VUQfinr+wdX3++v1UrXM/IGHcj3Mid2dPLEvbiemw9O2FcmBFlkXDYDp8slTkWylA/UM9DBteJ5RiNkyFTWAft6gOFb+ymJPUIhao0BVvwpOjTsU8Sux58RJMopVUt965nAmNmkXgOujLXvv4RV0bgwTusAMc7IGIC7BTE5QX8eO5XI4GzEreDT1zvgs5hWqaQoME6nPFJzXA5ONAPm50Her6WeYcsFOREUNFBbgkTjvA5/6pY6RJfaLSzIJLCbQRcEFlTAYu4qgsiDmObsjsRlHp64v89CH/ldNhcis8qIuunLEVBDmW/jZLKRY89mjZITQCSfA/DkvdABudHdFUnJwhcxzTcykUrxQdhox/HfAlsT43sowETnO5sSKYK9MCzJb/Tb5VPcK3JMzUv8GJUXM7BZeTRyGi8qkG7t0nQkEV4MSS8avZawfpxHkiVIPVNF+fRJ3Qg+qW90FFfkA4RRpvYBqU7uU9aVboQL5XKGcQ4Ed0Y7XcVZYUrGmjKAWe6thajoQpl2BAcauoytucoGSMz6TFRsv28qPVvAJrMhpLAZtmpyX27YrRHRWFzquhIugkQtyhGDaId/EBeSQWWntwbRxmXXjJh+vfk5hXyiFi3UeloXNscB4XZgano0DiDVkYuIxyDVAHTl7QBhxZg11UPZtR6a+iLlP3gTvwMRVBUJZqZKi5EmGIBSJDXXTeQkIj73HcSlXUKOKEM7hCoLy5R5dy7WHlxokyQmyU0JpseXDz9cK5j3Ykt5o6K71smCKrEjvwLWwFClUV2WYMBMQ35hdVI32t5LlxWeVhzhLUghhEy7TXLuXEvEUFyOyIVWiOTobPMcCq5m8S9q9Btquh5AydrgvYeE851BmeAd8TJA8bNO5kUsHE17PeiwIWNV+4t+oa+T4HcieHV9bcZC1NLpdA7TaVm7xBW3aBETiUmIQAa/E2WfkpNniZU1IU7hRGFfuYBFDF2F9qDvglcXOwanTbl+Nnd1XIWFkb/Gcx0Tq8gqYxlJn7rfUzjhQKjm0JZbE04qdK5SO5WkKJEc0SZIC1KnOFw7rF3dDjl9uhwvOohpf+aPwPBtZRShwbqPu2JlvFdOZUUmn1CIYiNA7IsoxeuJHJo17tyZWz6OIlz23yipQQlRsit6dj8XmZhpftx6kgJmkm1SB1yfIqBB56hyG0aVrC0G65qY02AYA7DRu4NJnMC/MgWmBDaR9YUEZkAhT8sKhEjf5OlZJ+aJMfr1nh3MIfciLB6oH0HlYtAiZJCpr/JTHsZQJxOK6GIKQIWRdIKFDNIZBUlM52ama8h4jpNa4SCEi7Rxe5zm6S7fBzFtGPU50A2bVl0kCch59JacfhSWAIMpJ7axSZkONUgOVDVJjqEQWW78jKZlkZU4ofKprLrQbRM/p0mKII/DaklPZwHBwhcfU9tiKfs2my20VtQcxdm7lsdrzPw+5q6JdLnYFJzpMHLjFRBaL05cMkpXF67xbmyWUkBQUsjMkSvWcbczC3MmuZBwMu6XNzTLt47l0gLtFA0Fhgc/tmk0a3oEj15FSQWGY+pu6Cv1Vc4zIc9Emx9Rwn9IOvYUmlgpNZSTaPVd7zsh9TWNgGXqy/qoC55PYx84XEKUyecGG+R4cbdmcFcLb3TI5KQ4/1Ww/9xPewqwAbghTInOEpUHK1gQUBY+tZgnR2C5YYiMpBhn4ZicB1OW6cHEVp2vR1jSrIuyWqqnskgUF2iPJXcGzymm1R1MC6nyz1ksdamwilzGhzHMFia71haNmM0Sp8uoGLpFwzN47OTJZo1lyuCpHHzNGEBTIpiTnhQkwRrJaQ+UnvhWkn5GSIWDCoxbMEQa/kdGmUGahFrXUszcVNz5bg1lXOH5BfO0MNp/wy1Dt7RekK4DRCDUVAZ33GEWPaEGnHPpEbJrtWhpDoogJK903lKTpHAmr8ZALoeMqz9lXIFuDYLIU+LQ7fkINs3NAUR9JrnMg9atLBTIycD/0Y72iSF4v8lDak4zM4EDOkIJpG5m/Yvq52Nej6dt7pKPo0qmXL56s2DLaYNGXz6vNTNsmxghdhAoCmZKK4yPQhMILxEiIusk2qoUaC7g80hQgpMiCVSwgyhWLUoCpeITfH4ailQHXozsFzBconHnpt8VC80CrqJXEGQJgBcq41qZQL7W7+F0F5+GA8A2O1sVsCxtny64WPojz8rJ8veYoDzZiYnEJUgwHVl1y0otZQlymAY+AmCzel4BpFJ4XNnQRxau/Nmsw/Ll58IzOvUubKV46BLwS6XrdcWjPexhIr3m1HSTAaAbc/8vw4I6TZCWwbpAMnIkmte/bPNbq/ErTggOGBeiuMuK6yGZoJFn66Z4MAFBuRPHw01hLnHIs7FgnhNSC015YT5eh5yfswHHfMNQOes2g1E8KxeuFrVjyRX7ON8tkNNm1KRFULxPrm4qkyReyYovqLkWK4GVX82ZOAQGUjYVQY34plWngTnEO+svMko7+erf2o4msTVaGlBqG8DVLiq9kNsgkI7LMtMuJRZMFIatgYr1Of2wjW9VovVaWRSusqAGiJHHvmcelv8Q6g5xoMIP3EFUVLaJ5LZGOil0DPZS1VQFRIEG2ulp80+JpQuy84nMcSmbwPtfWeVaWaXKScoIJuhGguTqRTX0X63XR0hmazJgzTEbQHmQKzrWyD3kxNHQG1FGggoN1CYFnprxPt0DbRPQ97Z3IpuDVX4GpwcDTjDCmLQQdvzScN06K+Y6Gu8lHSvvEZBV4kh3QHIOY4rTKKcC7RBiLqQDEYxclTxItluRL37/9RfDGjcf0yN6eysq4QRFVzHWy8YLY/j5HY14DyHES/N0fb2uwunGOgylpyxpHNk0ht3fziMolI5hDpG25BNDQG2iLfNosdFetiBprisZhO16DsGQfBk1pmMv6Jl4QgaQMy9LQBXB/RsQjt10BbIct+tGhARNWqsBX3cibPC4NGtGENwzxuKxptWKmrtIwarO+GS8gNTdzqMB52K9S5T6fOcKlz/ZJFOHPCiFZokHlVUJGJblimTDAOg04o/YMSLbjJkUA6UOgGWdtHoGT2fukIjXN6rLcbr493XZORW+5embJpAwipVYGGpXB8UpK3DiVdBRBcYZQdBB4lqKHkHoHHEw+KRuMBvlC9KI+0jH7Ai3GZ5WTeeENgQucSJdiJM5nKDE90WRDbSpuJmWAnRzxiFKQ1Aixh5pQHA1M3tEYY5liKfycWWMtSIRJH1kTJkwqibhUJiPhVLRylY4kBR8xSeCI41u7rMNOZhg2V7MWVJMlq/elewcXaueLRxuWmirnIbLubwUY3fls3wUWg/FJgtf9is1pelpPQdk/3XwH+t6Qr4tl+dGsSr3A8Dw/Xi55bmsPYtZF+GmUKwAIDWWhl+cT+tUK9j+sSBdMmI+PK/YimGBmPETq9vWroQX2aAbTm+1H0uVlcZA/5PMZzmwVsPtzW6p4OoWbcpgBmHY4TJyaAh4Pt3fuPJUjCD1jOHJYgaO1F84y7UpPX+e7kUSii2oJEjZgvyUKuShd5hoEjmLQBrw1XGSAFUeokaYqD0J2dB6kuFdsBeJ++Ge88t5OL3gt2giEzC3zmR59MwgD7fMqFfoz7GrgRnzit/i1pzgmivRuFabjwjZsWSdvQltn3QdW7EeIIniYIc+5YcdoewIUZHjQMz7WjdyngIueGrcI2wEew6z5OioPa7QQEfNpfR+VS85D2tUFSpCvNIwNmGeGuTm1H/DwFB2BakPhug2OXskKl8A/3lW7ewqZBbfOo7pWMWWp50yIDuOHX2gRHZM4kRmcxKRCwntfaANmUf/KppV8Sb/Y8NjGAs+XSEKQ28ViRGO8rclE1x6FXifw4YEVZR/8FRSHjsLgKt3XD5vJiLX//5fvJzuzJkuSIKaqNn6Tu//DGWK4Q97szOpmA90A+Rh8Cb4DwSXfkAA3TQJdzczKzBs3Is75J3f/BhtVlYssFgsEue4FZaWqJiYia4Pa9tNYTt5x/oSMDzJrpWdflyymiduQptcNnsbwuOBR5PkQOVqLsySC9C086XhxKmwetqcwp/tgW6/551huzZ13etiz+THVssGnWEdjC5ad7uZU5P5CX6wcL4xyM/9h4mTkxQlbACsaF1kdjKboIb1r+NHw+v6ppePjretmm3FtT74oU8pwppL3t6HTx99oeegJyJWmfR9s3P/JeXy7O0FKDdVwpz6euRxk3nbf37bb29efxvpbaL8/2vtuffKdk4V9DfKB1o32HT8y1qX3NfVk11yPLZpdLukmQ/yQksdT+d6M5wr33f/gn0tW1pq3bb+GqaQQJHerN69jmIfzKfcjDHNvf8Og6GzBx29w/9NXt/6ntNKw/s9PPub2t3n8flncJqczD70llsXE+bdt+Qa/Fjcc/fXx7MKxFyNvrHBeX1+vJ32Wb5sxbnDmcuQPYe2/+Xsvpy0v4ZYs0++HAodohsOcy++P0Z9z4SkhtP0jZwNv6cB/GD50qFd/D7/Z4RHe+Yf0mtQGFYV/zRrH+z+dxvm5j/eME5daa6VS39/Ojyqvv/898KpUajObr71yHrXEpm8i/xheEX3UVPtW7VH/erU8vKq9Dvd9Tul+05TvQyjf+Mtwvj/062h+9P/6vT/S9VuSKffTVyms29qqkVZyXpY8blg3v9VLvmtJnRMC9+LHXndhaw/aR0G9Te6nedu5sp1P6cNrISFmlBiaytDqy2EmOdLxobd7G1nzPex8TLUfYSWc6v3U3jdjHsqaduHr9DWvMUoqv43Y1m4S7aW55+Tg2/d0JGPd7a9//5Bfv87X5QTfytLsyh4UzK63ADm6QT4EPtKljfNne9bLvJv34Y3hY9tK/w93oeNeSp7NbMxT/Y1dXq8z8n7t/NXoOvXZtO8oILHdMpgFOy5jp+XwkzvePnlQjfT9gcktOc/U/uni6v1Q0gqey6awN12sbZs4+xSP8IFlCCM8MptTbt7ts0ufyPId+vvzj+0jm2JOl7TWyY34G02qVHcBj7BFH/+nvzztZv/90wT1noCO1+HZ//BZW18Zj8+myUonncI1vzxi/AC6e18rOOIfOOPTg7PZXfI2fJ18e0unB/yOlFYZKp6sh9ovK503Cyn5R5ub/N4a9F6i9dQ39bX9fphP9qhj23skQ4oPaOv99uE/QS0BVdatftlDHVjXr92F8qHTtT2EUgnWas+WtKTTx5zAqMkUVuMPxMDdWXWFTQ1TqXTrSxXa7Clv92olJ+Jm23vXU3h5KDRJ+MRrz2/v5nmoLZRL/Rd8fM4dNuX1LuwtSV8dfr/+WNR3Y0dT+Sk/Ujyf7cun7W/bOU0Z/OfTjOFbXg0dx2zowery2/Jprr/yn2uNz/WXl/nkhr8+RGYY1LuthKeYW7SYFOvHcIFr8y8eIqRK85RnSrNZ/NB+//Pn8g2zCa977dfwvAz9+50/WWMTPNkbxI5vL+paD+Ww40z6wdOTB175lKAX5iX/vuPZRZR9yHRc5zmF+tHvb+P+B/O6zBDu0OO5i77M/mH82MzZxrqOU5Yu+QhDWmV81ROgx49qgonBbFVHtGyjkWW0kOoPf1e72PNvNKA7PcI1S2nYbq7D0wksyic4/9M4Dvpn3361D7Xp7Ff++XofacpwYftD2OWT9AnrjF9Su/qfflpqeYeL1UacLFkNw8Ofu+zpvg18YGj2oC9T/R9bx9slKKVVb2kJxGGRYGSYArC6cr6Py3gPIt7hz49aw9N3ppcl/nzrhxvGNoCMX8e+it4ask4h0zDBMT6EYEJ9qng2/GvyPP8031pILn0XTmQwaWvXZusHfKqHD/NshbcF4PtodMR+Wd/io/yc/qp/vGg4oaPNxUU39U4kjh8f3oDrbsFn2z4YxsEGtzsB49oLDFPpD5xOQULyUUUTngDSGs8DV1Z9LddLScd5yPk0Vte7VyRyupkfdChiwu77Inpu4OLjQTb3i+DQmw2GcldXeaL9xpcLuXPTcnw23kDrUwMEUO4GGkkfWLHAz+rr9fmU8hjU8bup/qmgLCoRUGZjl7EKz3H8Uf9tV7tKcl+f2o6l18GaaOJ/y9Zie6dL/36sn7mg/eiW7RlvZBE3sCvt0O4jVdX7pd35i8xLllOt8f16HHwCMq5zFwFuuul9UJk/d+cHeRbDv7z3g0ZPTjKax3Hhdta9P56Fpb5HPPfbfqVwT+dAZF4t+dT7u9qLyol+/8olts0j/m0NmB1mc6BJ58UstEIc81+PHwYsU5L5c8yHbC7KyTh8uK+nh22N+0kGa7+FeBn4YxBu4dX5m3kyxJBMVof3bwR22O/ufRtudU9GatT3W/wa0xbdlJvY4D6ul6HJ5uPgnk1/HNvffElM7qu8rnkYx7snNQoy4e8aeiwKj0OqsTcnRRirQcEGbe/OztAhinkUhv1h0CkK9j6aOp4++LDhRB+g15k80DGFp4dArL2dKsoz7408ym78ADI+2DKIo/y1Hdyw62XUpIzHoIdD6tODynHM9mfCyvYvjO4Ybf9Ftr4tlqfxTasOXMZm+Yfx/rdzzN9Bf7/Z9Zi2x/Vb0wuVrNDeTmbfPyO/Q541PHFDFdaeFzrk8LypGYONCDm4sWR4qdc/2yAUWjY5b0+nUD19oNeYY7zt7oanlCrNjO1WRk93RmKCjwehfZiuhYbJ3l6XxWGzbZz6TalkjwSGZD+7bZ2fXSUvUevLwN9O8f1jdJc3k9SYkAVtGW3W3pHI+KRRgEXefsD/k/bJor8M+c3ZGb67Dc65h1yG8w/Dpe9pbH/962cDt9UbGGLb6DhXSSdzR3eIPYGsV3WPY7gfjwJyfzfPwfaSJnFPabd3t7S7/WLyAYf+8EXv9+qD1q7LbYtCAFD/Vr48Zp0+8FK3REuEW+5PdNjjHMmKt5sw7zRTCfjqpI1zDkGpAev6+vWcVDd/nyfT+UHE0PHy02nrOZopiXFyK1kHhxqhoWlvX55sP/LrOQxyK8Hh/Iz/56XdIpowDEZBeJfbtvgcpLqHT0/0fYqd812o5SMILeDMyuZjZtWmptbuG9SNhk9hUpttbb3GDEMFt/Wfgrf5oIEq5H6qN33yxk7h+FYNYLH337XRg49cMuD8MBXqxa0+sYW6Owb3+sQWn4b0RjVtfML28KwLf8gacmy+L2EX2SLJR/30xSyY+uZbM4mGUzH7od5dXPl4a14tagOZaZumaHoFvQVU6kqA/GCjESjWB/oUr/vhqEmx9aDml52R617c6TSpzbX542qQe8PuLfXObZTtBsUt1k8hTGQitCy159vAeD4ITea+DaaBrhrqGg/1WrWw7MmUhpu3zQ7WoK0yjdZStTwiVmbspA5M24/TD3DfJXfS1/I0AFlaDg+clLjGgNCvC5TnGU4TxswW1LIBtp5aO00Gem02iG2mA5AzapFq9zIpJ7Uj8b01+3Jsd/3ytf+sb9/TMd0/rmEWqIdxwd7M3IG3PiF5CMd6FRe2RK1+r+LV6YdkHuprc2N5knc1yWya+pSu6f1pfvib+bf705CzZvo8/f4rhT/HejWg1aYqzhH+3hw8HB/3EKP89TrbTLl1M05lz+tyQv3tJviLv/91dB+ImwzXF3UJWk7Kj085/f4BD2l99bknvFLG3mTN9iGaQ635PTy8/WuIEK5v+ZFWotxC1vy2txV30B8v6Xsr7o/P3TZ8//2B4tO4/wtq5XRTN7nbO8rx2WpWnXx//a0jDpKNL0XOdgd9w7yMpvXULqbdzTbs95pu49f+bYWfnx7++f637X/jSi7ShMe0T1o/yv0H4hb/bZrL8QAJVCvsQ3n7jnX7D/a32n4zs225wOeW9D3d+9nBPy/PNa3MDhP3am97T+nrOdv8+1eb/zqu4xzuvzr+NA6vfCQX999j+BpD/b5Zcbd9QwjssI14q+iFrO/e96eWAR4jyfsF9+XBXuT7zy3IMdQjgOOiC+xgbfJ2ce/D83oP7ZaDOXZA7BivHfcQnxtCv3Wj7WOJ1xTdGAv8XbPob/Uyt/DwhCUND8MWnA5pyYX+8EPyuMUlpuLhUIAgdnfj47hcdcZ+ck1VkvEcRCcpT5DF4PnvTnZN7giP/ngvl3ExPZdc7anH8UTjs2v34c9sT+PDwIVbvw9Qb8Hm8dSg3ee/XF39Fcxo5fH9JQ7s0KqCdUDMiDhKx77b6hZNA/h+k61jq5JdfsjsdltiLC2goWgGY+/rKTj/QXWTPxOt98vIJalrhkY6jHNBjHHdYDGtFjMgJ50DxBkrkQca2YaIx8maaOSdX57mg4ceFnvgMBMb21D7kKBXGvIaRlnotn8JZvClTOkJ8LGMywQ5EqMtVOzlcTjZa/Gjp9GiR9+lgQHJx8PFMLHyCejOQ82TCRA/q5Luv6/zIuR+K5/3m7RbueQR/49QQaYvpH4s20n2/yT2s3+9yskvf+ffv3+dsG9vPJYKl6anLeXhcNQLnsfbyMKWVIoO1vVNMGdQME/l92ymRS2gmLnupGpVrg7h/MW8bzlA42/n02bKv309O3FFn+Vuam28OE9yNfOkjU3cM1ljABVHqwjSsh420NA6aBm0OG24l2irBk08QCMU0al/0eseZDjHt7JUCdQdfWsTrObLtA2SQmbLqUyUrbXRWlSfFJnjiXDCFIc+PVqpH8F9srn9x/zjGJ8fekX14/bPAWWiQGpsL8aRbaBAwE6MVdu5Zz+QmY13mdjGggaMccBKYPzZ7sYZr4pHYC+lTHh2N//gNdewUGopQodFTxOrUY6+gBdStmU0KIiEzghYYCNK7mac4+xjocEkd3KHJtJKImqa3lKGq0YWQJUIQAF8AjdGP19367J12Y+cgpXgrcPbWInnOdzU77c1H/I2lDbs+TGq/t1w/6CHhT05zNXfzw8vv7uhHvPBSHrbP8bc+mb/B7hdId+c/nKb//Fcc2nrOH8ca/uUpv7r69O5bRstT/Z+fPslPwf7rvvn6Xi93T8Nbds6Pmq+r3jf+5t/+AovL6qnx/JS4M+fw8f/rc1D4QP0z1/I3t8Zr3r08NPw+oJAgO9LfxhOPl6hVem3+IW33Ep7gNIbY4O8qrWbTTz135efRMctp18tmD2F9faHHu3NOYPpwnJcz3Xv8Xgpn+oVpyw3g/2HGuxxk+OWw2kW480g7yeX8d3Wj0+2wVgKpnRmPW7Ks3mxP1DqdixwskvJp49QP+R7ua+4KfuNsLvL9xcK+XIZmrF/hHozufjo728HGjH+S9JvdXj8DoY68UG2weWtWv/GE9h8vHcXjefJ6NqMSResWm6Px/BtLa/yOby1Nnn9cHOKT+k6riO8hQcAeRci3vOwHITquEwOgcduntg6m8L1O/00DUdpL4Wnj/WzE6gldb0O0Y/9fT5+GRCOt7ZOco4l/kmB3s0ZdxDQO9qSbuHFoOXqBngTsq309r7PBPaus69b9es26feU/8Rf3DufoYy4iZnNryqPdrtK/mBr79bprp2CjeVWkp9s/gAqGL7UHR30CkE28ht62DqeQ3Zovtuo9S1cbujdj33r++H7TmzjhZCeXavDc+ePdmm/Txet7il+lHK7FRDzh+nbh+JkrsX24mfgTNKU5y8m9OvY+L6ORtY/TP1j+Nw9fY+6EEPwa2Ia0t3GtojcKXLv08U5oVRNo3vp927dReH7Hf+s/ch0cyZ+/vjt2bVPRwgXLW9r+vEf6H61WdrG9YcT/2KNcM3eNp+l8f35vPcTKqJ+bRbTaEJbzePbt58jzuX1yu22u+6CMLl+o3PsLOg1Q5ZRPkLL6MR+ka08zQ1/6P/y/j//QOGLzSxllf0jMsX2z7oAq9v3Lye231SyHzbK6zRCtoac7uPDjeJ2cgbgftbzeGnJ7d5/PAx0/CqUHp6fzWpm/U0Xru7rV0JZLu6oefuj88Kdz2M/3n7+4+3/8c+fv3qPaj63m3ac8UVO49PSzzNjOk6tm8vDz0IkMaju1ShBLn1kn7fz6U9VaoqSu7E/+mE92AM+/ZDLw4Pv/TDnH6qmdqIp/foQPw+GJff/piGmhwBSHq7l03/TalH3d+PMBejVx3+1ZxMHLvjH+/f38BNbdQNYqbgGP7tP+C71r4Tx1n7E9MPWAh9mB1wLTSfjusj2doyTn0p9c6ii45xhXRe/BqVe5xmaLCFVi80u1FP7+ven8o/3q/Ou/eYXl1q7peHn/24H27o30FqU6kpyLVOIAZiFoDisBIK51DxClhQOzFDyNvnnfPf4g8Wj8l3cXNHkgq1RWE4n+HICX7ICQG9kYml1mbqTmuUxDQpaUlmn0xIQTZ6Xos9qRkMXrjhafefZfsTl2U27mKydL1SlLo3QBQjc7GAPijnUdczb5aS9xVUDTLpvHuPexk2Mo+UMVB3fVw8MPINdcRyMchwgwPR9HsdWwf+04PsAr2iplh3QnSwL9Wt4nK1KVC5d1OHMrTLl9H7Yn8bNhTQVvQ9cKC6DTvk6CwbuWkth1Uid3cWR4zdnDBw9uCAlRvVaj8re43vGlO3Ub388sagHjxv0eUBsld3JxoHr/S9T+S7veOtDv+d6rdWO99qlmeFO8/G6Zm2LMej2X+luh4PvUNbTp6nbUMyw3fpD+KXlzEX3Csn+TK9lH/a/xff99vhEYtKe4B3CM70echC/fRQdWxiOfzlNrOVVz/12pGDTEcx9mrbgMKdfACLstym+7Or2sjLfDP1HLK4lLo7ibHJhnt/ueux/f6d9y4m+e1NxGeP4hAeUjfR6hhb6hw9fq3GC3cajl1+rnt3vpu78+MNvH/i/f4SC/+2ZsaJ8U7UkHQetPZ/59GnitcbSCNfQNdknLlbQbvcPUfr6AF1qDW7PKuyiwpHB086OZtFWI2TnYp3hkAEg12CecH3hk75PlFGG2fzWp1wtCYk5+a532s/AyAjHg9mpwbK1y3PalcaqopVtyGEIqZkeMLSBVbgX4trnuNYBj6ZodKLlp+ewf7uSnusNRldrrW7mWx/4NIReZCs1+ix6zfN5itZvwyJVNKdAX1ippjhes9ExrIb2W7d3H3ayFMppL5bYa83qpa5nQMebkkPxXflmIFtbS3l4KqaM0KS67rcp5Ndo7Jov3Czv/M6DP2Oz8NBe5rHLYhK3n1zy1Y4mhKpjt9oPmYGSjIIfjGoErxcLIhqo97rSxH5i2u8IqyHbpgBTUGcTqzbn3OtNV2ts/Rb8NqIFDtK6FWovcIHuejeSXbFLBS7V/jiwMLhmf06Jk8sbTP6h3tnKJdxK0I+4zE9aRRla94VzPOpgRD+NS36Jp7JvCV7jc9wBK7i0DtNAVxHcP9xJ1jEc36sd7EGGU58+zSfYZ+yLaQxPtuKjtLPDaO5HJz78kQkc8bI+D3V8a/YU7XFo69OpoupnPGzFaZA9nTnnMgnFhOPgg2o1gnCQUhzBUX32t0ajFYetE9E9DTSTVCe+deVjCE7r40gdJ7tSQL+U9INLttheISZ5OGsd1BDNMRt9exuaXazeHuSNsGUQi2IbOYoP9p18CN1MfZK2lGY+e9f1EyalupXQZ3u4U97jMBiv77vAw7AnY4t1k008iJwxiRncxdQbGG+dF6d9kCFENwbL0ZuCLU4uEcbYLZcHLe6UK7upuMr9ZBBm33IPB4628RTVP9it19Ts4HRFSxCMWcWqpS7aIrswJFKYJyjOijXy/kL/46eLWX+vuD/rfhsvV7mWrIgTugzn27cDp6vR93/w8Hb3Ko/bHYfLU63ho9+VxHdXoO9Q1BLu2090XXcO8dLweP0U6sfBJ9/e7LSQKddWblZLYPLH30IZr9Ib/GTv7Xh3ZhsPWmzWVu8Wbes4/jdW4i3vq5P9+g+mfbxWEz9u3f/oVdePOvUQj7LNId+ufErv7+3hz2Crkb6/LejzAWtvroWjWI41+H8O9qxJsJGH12+N/y5Ua23v+/YZcxrD3RrIcBw+K5XhQWP/zdtkf6gl9dzKd5foh/bbA20SgkWxtHeXvw+Z/3HkXj0wAr8sxtHtJl9w/MG/X0mfPt0/rLjPL2/Tk9Oy0wjFpvb91OFqnqOHjZvMW3heB2V5HY0maHk//zynYq+zxdF8L0xAr8j1vJXa5oPO85EOkc1gnFxv4cvz2+Fr/EPL2/PYb9dtxxHv1nds5vBGAPAZc4tTf2fsAA+x4dGGeTls9eAvcDOmBuCmAGaY8Vs7QaTBv/3+p+k+GT/Vq3v0uRokGKg+PmgF7sy9ZHv56+3vqRGdKOTF5b8DAqphy0MFTtq5R+tHVrYYuVLM+6q23/4ypOySE/RYAKjAXIdBaj1ZNdIPfPr5Oav39KqlgX/Qf05xIf9UirHdMGsT8MppWeioD4OwHVzoE+Tqy/VUIB5Pn0/5Wq0WQte2dIx/8jv8g23pbXQs3hlrWcvDxUaC0eeCVaM57tCOUaGqpn4xPd18Ez68ifSAZ7ndh3ybTqAqwMXkv5n08eUx36Z0O08gxkU2vutqdi6yPMm/bC04uqckg//e2tkm1lvhxY1b6m+6b1DG9Cbf8X8Xf98dm0K1ianJ3K8XWz/qd3OeA/fr9VOo1n38p08zgCoIQSeXttqug9n6b9MXelsnZSddCkSt4VGLOYzWg5W9mI/CLvqNPh5tfa/NOqOz3V2EmjBYKXZ9+/zDbPjXN82bALgpR02SrNYHd2yUXkDG2a3ZP+8x3Rdh88vvsnwGB9hYNXKtuq63lz8t9WVsehGcLJbj8sP+bZcnu7uPj8fL1jtO1Fd2BLf96yllqlO0+Hp/fVzZyu8bohLUyxJ3H2fKZpUcskRz9PeOUFV5+xDmuSfc/tuobv3Vn2JPPb1d4BcNikv7dv3pi7trrGW7/1+XKBrmzcLNDCxwjLGsa4f2r834B5NzTLZ+b7Z5M8vcO6xpyMv55rzmfSfnTcDgmyXf+w72mtDp4uShue5Qp7nsOBrafvmwuCrerX86veB0HpOM5+MY/KTTJWQ/CH06nerhzo8DOCzLw15OMtRytrdPU8thUf/g5wmD7CoT8VvDNsxgjVumzPep1REe7T7j5euZZX9/Oh1Jzt/bH07B+kNCHlxL8Y+lZF9rfMoFz/rXslcbSnwSIp/QpbiY7MkS2EvJXI6wnd3HcKqQVyvXVyPaXWxfrlNr4YNmd47l/ul8sX392/mJNG9mPzpd+sC9346LK9dwM3IZm5gHG3ZM5kf57dqdvtao8VSOb2Xk6a1xnsdS/6pi+wypOW1pibL49chVObzl4WtfG98enG2vtpSnXlAbTfhBIbStNvoUa93qPpX36puHduRk0vcSHgbr4tDpI56H/epPaa9QWk8Q393fP6Z3xrtST9F6wBT90In+9vClvT2EOPM7I5Xm9nL9NA3WQ9Wn8xOgS51gmCLEh7q6Uahp2dpHjM3/aPqslcoG5cGEeSzvKuVsyj66CjSema5YAy6zvaN1RVZfR5Ovdd/lcawtW3Uf0PjBRnM1OcN8Ht9kiAvL2vnBbPc4FPs+Uh9L5tufwj4caNS+mZH7bDvlis+wfzNnqSOx+2ldYlClKRSgaHUZnXpEaXt2tD0muJzKL2CZOL/5guuIN/EOfNBnv03TPd0uBrrzZQIAa/0P5sFvegS0Y7Jz2IYu6EbVJM795bgLEnnCm3aQMD/gdr/pPAfuszGZ6rC0TvzuFy3oh7OzTRa8f12autPX/fe34VLIgbEX7CguRAs5fTj8UaueJlO7+AEGYzz/ecyjcTbd3DSgNeoqtWXsvfnPooVsKpg1PlntrZ4j3ezwZ7fuZ1+PtPPy81buy5yzqdy/P8kdu4/QK66LaXq9f7kcO6aGgHDd3cIsP4z0tNlV7HtPcLjLEI974Yy/SafoY92XohxGW7j7oyBUjqch6bEBl8VyOVrskj9eOb5sH58W9Qsct2+GEfoQmNZNYBqEztTZvno3mtfa4R/dO0Lac30xAw2SNoGhr4Q499pvOb9Cgxo+FDNRMOWjr+ef5uOjCFupbX5yeb33WO7w+4Q/6VujNRRuOT1YTAf02l/vo36Z9dv+jse3T+MRTtNHb9D6R61vs7TmWjkgZun8vsHt+HJRW5GSmKEOsfo+9UPROKgbmF79xX3/m6ZQ8+iS36uyq+r8pDl0N41BBH4mKfNEgeh6DTloEXK6txHvAqvd9pPpW5uGIeaPrQdhc6w9GdddkxuY4E9chsPkHfC8rR536wYe+Ui0TTYBYuhN52T7wQbL4UWqSXbMxkZB/kXtEkc+SQVdfz0mi3Z5OG6/opv+kv5pzMQDSrhlYrr+Zil1mqofF/VTBuOxfJL2ebJns9PYj6rVm8ncTihB5e4ZY2gH7/RgZy0JHwPUpl6usy2DC2jp+GgS3RmTAEy4TD/1Wss0qZhQ2Bdg2RLun85Fh8GWhmdtq1Uz5iw0++x5r1DX5/M28/gwXNKB1mjt0o0fru3p86CkPIkMWgEOXazgs229pQk2aRovLuqciaTbh9MyPRaPpXYgsOPiavv0F5ta5n1bzvmY7LqPvo4nZgvdedEAHkic8XYbsbxu/xCTpO7x3g98dsWmDNza751/il3qtroBgFAL6d1JOMR2KChb8d8tu4Quoiqg3aCTWie/ItlxtiFxzbno+iMcLdUfQ4d88GUw70mj7K4djyVd2T5ONiXWZrQXtdDylsSBEWBLrb5s7O1vL/TjAK33LllroycsRxZMg203+ouvvQsT14ZzwKTm/v5kMHMC2YuF+SYHfDIAv/cdrW2Jx7FlYfPjerXnT+v3ky9Dr0e+A1osTXHC3Mb5/ttHfPJJykECpd5jzLXbu0FK7NLjc7z/c13ix9saz3p9uYG5tDdPDw9SFqeAB2s1LM3rtkdLMiyh7czNLENpE2zWsdhjH3LbF91epnbnPrSw1JrWLZYXPdLpRwzD5/FN3E9UHujjt3v+5PKa63/n0n/8NvvDhqbmcnD7l/7lh/6y3eeT1Hm/zuftn9gSShi5X8oOAzgvbDmOHj4GjTT1up2nfrWzlE9VH2PuHT/HaG9Iuhj9kkbG51Ftk2tvZmi7tmhOR+mAj/Byd5+mVq/PidzkfVMLxRbjPvt9r61vu40BbSiiuPLYnhZ6lcfFH8ABuxvK3WB4btDHMx9VS97stR34ma43M8a1xEcXH+2aZkMOt6QD26ZYPpDlAl2bn9N7KdMXuN/RfHuMJfXJQtJWHuTqLnGKWrFCSZ9Jh605/7VmW2sFKHpfauVkWp8mpMG+2oJVHTcjduAYuR3LiLHjAOqDAEjGiY8Bg2J3wYZejrwvT9gIS465O7UwMbnT49YN42xH8+L8Q4pugDj7Qkc/aSs8nIKFNp1VKtT+5I3LFrRjP7kiNztFMQhoT+3Wyng+ih+JLZgQoHF1oMY1dFPwFEinipTpqUUoMnlWmqNQkaHNk2j0A99WdoBThWRETgasEx9UDrARVQG8vZhrMNLFPVgO4Vd9tIS56bGKvO2PeIRf2/OZ9naP5qSFAw+jSmy/Poy9mhFfcQ8QPNze9seZf/NdvVGgLrwdMqLlnstDJOOGqOfupN9lNLX2eVlUev614GFO5TeTh5/neqv7l5Cp9Y6hpTJYV35N10uiXtPCm5VWhnbbxzE05kQarVa1T8K3N0NS0OTbaIEByKEc8YIu2qJE8iEP5krtuvYlfyP70zTlly4z2ssNkekjUy8D2SWEP+xPYMJJQzG1A7POOJAz3k1/p5fl5tpNam0tL+POlko8t5SDbMRRcl4PfxyfKx+/puFU/i3Hy48k9qET83tVH+dyP2yUb2ag2D/eG3YruXRj/WWd/DpqBjuPcD2scdbiBNbs7WU096Gt6xzBRBnz6D71wh7yB5xwe2F8yuNze5+DvFyMGULiDm3fuzqcYbez2faPEBO7QObty5k7huVC7/KjBWw7D3YXeMJdZWWrTBS83slNbdS9gsVTOAS05TVQylSqIuBdgfIyaSGzTZDDULuzMEi587HVgqpovMt2DgFiP4whARZW896OXc5ufbCaNjYkjpm9+ogdtEvfsQIAOTS+r+SwrPPIjxQfpKCaJCcgAlFD0LFmi8+P+564OUPGj77h6zAT36JJ2XjuRAl2r/dvcPhRs2XWMRqMizFXuE9na0BiAqdaUNXCoPY3+i3H9R8ux3u2Pk2Xa0/U3v/pa8cZf9NJDd+GZd3cyS5bS1X3m9cQIQ/IPetky2kMMNNGvvVfp78rkorpR/KnkjwUyxY821rgbXPGXejVc3djj+0VzUxCyhQGzqxm3+bwYrGcGeax4rtgjBXd9ba/DqO9gwQG+pRXV6281ZPMDxFLmT8OS3wHn8U7XVt5cCK3j8GQBZ9rulZM5zP5ApU+pX9D3D3tq/06wIfYX599seswDQ5aUel0VJOLOGvpf4vvh1V9sHl3i0Cm86wKiZve+qlbWO/T5aIrwS6EUNp8ficwM9ZmzEjrSmXPD8MBdtBEeoiDKmU5PeWxrx1HaDlauWacKSWmx6jQSqvEu+1z7XqUYAi1yTz62Quztq3//bgX0x3RloNoTq5DdyNmejMXw2p9gwGs0JzyiEcejzfueNlBfj20pfxMmbuRo2NGuWr+2zA6015tx3O3djblrG8a7tJ17vLo++Ly9jTmBmHofBr0Xaop4wLDXl1tMkoyNPocghY33go1ji6a1PNo7Hmk5AfnFvn989lD9L4faOKjRxPSqOjuh9PN2BBMPk9p5zLqaa42EYbe3y+2We0xNI4HOAJnGfwD9YJe+y3brtHchrlxXR+0j66fTnYP93cEsrSLC7r5srqqtqjabs09GPq3tCyiSKQkNJrN/XyQvZdkA9xcPgV7dc5tNURD1T0MdAUwMZZ2vuiHBbnKYMd2fiL9/CrU4X4Pj7FkalpNsFkVaqP13DKc9HgY771n503+dfaEhwUMAT7Wx/JrHEK35prrqBdnjOSIfXrS7nvRo2pYDmoTjqGFXt6lhROYwXET6/mY+iEf/GzaeT7QzqfeAnYY290cZuxvV2cTuva1vp0cv9VgBORwPgazXKdwoNqFd+rPPV+8fgxPVvhFzWTPfkPByi7ZU+5WOiwPbdUthVnU19HuQ36PZ3LJyNgdasxV1T4VjVTJ3snD1p59N+/28VyHvIYv9bhft+Eh5vazYje0TuHgkiBNvnFqcAZ7mlvlO+DcP7Lpz573vyqMrjUyT+N2K82GabhP1l7cCwN/KNoch0FmvebA5Mzi+G3ro7ztdPqk+7Ht49RS9RPFx/LakDrGrrMnvRp/OtZw7v64EbXJjiwJT+bgjjmAVR6D8jqaqfQnM6W1opRDi2VGHgZrSvIyRDBdaAierw5M6YMNYZfx+249VprNhe2phJk2Z5yzm/kcx0duw9CNeOGn0MsQYGBbILjKJ3ftM34c6A8K6FhilNkFF0pxw9ngsUdn26zohlnbugy1izNEY6yYqoTm4qllcINXNcWKKQ+nxJG+ZiM/eOaFyzqFCEdNp7GjMbY6R5YjInrDaIR2INOJJdhBoGloCrWyj659xHka6XULf5iP0G8Pp0//KcfeZDfHZ9uNtGKQ780PD9GnAeS0l+ios80CWpoErZaMxvM5qWZnqh1EOnvb4Cf9PgQ5NEkTDg2HqsNQ3pucXOsGwoMv68HFMtvjNKTdoA/Apr5XFa2Ra+kVIaQMEE22oQjYGd9L9Nf70KqnWsREf+975YCVmvnD8XZb6ZNN/N3/GXb7Yt0x6/vN/wHek9H6R0L7RPD74Efs9b3/cNb6yK3Z4bN/9gJkvwroX2R3NcnXZb2HdJ4+6Lz01EYL+7dIMJWNR98AORcDb7n+8TNv5fApt9sb/xy57NfHM35/nf8y6bC92ILV7frH2G5HG5cGy96flre09OxxvZdqL6WbjebBfL/9D5/wpXi++CPf7w+za1gJxjUjzoO83i9Imujp3BYrtlt7v9dTqszvZgmtmxwqXzLu2Zi8DUISLo085319pNH/ekSEfrVtCtoJWBD1w/nmchlByXo6tP487vcKs/HepdjXwUAddVMKhzDyBkdfRB8B7KDt5HTpcHPOc91FNfGnT3edy7c3OH/uGUVYb8w8j+83HvnGIQf7GD4qqY9DTHkU58cozxOXd3pYMtNkRO2Iq/X+lR5sk4DW+9U4CgMWCefJvFBET0gimrSgSg179j2JzoFBMR+rfcTfc+cQyu7mQ3qXNd4DLPoxOYz27f0epeEDfh+h7Zw6lRT7zsfTUAc6YFg05XaffatmBOhH62vdj45c89EtmoFvOLj7R//9UwTvTbqKggDYdvCxtC7JEWmrtVbEgraIedpgOqcXa5xCz3W1xvkmfp3isVpAGsYtFcjCyn3Aw2u3fuEU19rlGf2hH34j1t4Z0Wapvdr3/eGyHfVgO41Zu7H8UvYvy+JSf7zAryU6b728H8kMaD/7z4/7rQbj3N0S6SueB/i4MXpca9MHg2Ma8BYVbrs/Y6DbOKSbtpAxJ71alM53ILRDKb8+8O3dPA9n+ec0dg3DIVVJKgzS1yt+PR0uSupdaR+xeZu7cM/HmKBC356xVjlef3m24dsRQNp2++FattTSdxicSbkxgu2bkZv2GehWPQfc7wyj/JI/dAzQ3qAQgg1t1dNHveTY7r0Ba6cFOqdtTKu12T1ZkDhGk3MD0Hx73/pxPQ1gk7MPt48/E+mysdSVanK7BciLPxKH9l0fjSnYvu3LRQJ8NNye6U3NPYahoEOE79V/mAttZhive7fqpVrRfOhJ7q+mfce4vTc7jFvCeW/bLNa0W0yyp4Gaw8qnfaQt9zRKCWeQ3vJKE7W3l3nNsN+kfFyIXtpD0qGveb//+pr/2Lpr2qDIGzgKUEOzAVVoXlwH1w/T9qdge+aByutCM3HX9PBwpKqo9YGvQIPIPDq7x8LGSzfj2rudtEObXFbhHdTNu2Nz5eir/Vzaqzlx3MHtShAUvU7026V/PEsBPcopvRtvtb8+mU7jQM0OgdI3tqYhyY2wryoypquY4siE+yH3uwn3lK7zRBotrRlddvnI+7dLOPO2YFo/Tz1v5gUgOtJSVO+w73hwSXIaRYxZWK7orKGjTB3SunN4+Ksj8XOGdjW21AFXGbZthWs1RQ69H7xPhoo6+u3Ls13G23sPpR48V7hY7YZqzYYwmwH7B/wUr6+cj/VkmPvN65lanX/60ix0KTrcodjeW3TpbNNdkiy0hbD1jP7rT33Zu5/rdo3zz/fhnZ7OVW3AoyLvkrQ6uJ4Z42M2ly0lql53s6uZgtE1nJ9847eLMT019pv4NNiAoCG269xFDfaOlRwTh8EDHO3Y4ZFvxyM6ndrdODl9yvsIzAAk+ZtZWE5q9775jzDHcWNTj18supml1yE6Loc16ebGwWgJ4jHduoV/s2qSKN+k6rPNyKxPeOhOQ7Bqn/4K5kj1DH5qOk0ftaefP3Gu59nzfXaWs9AIQxwpSOzzU3pNjNCOTB7PI5if5/X9Sj/MBHhetJbB5DhLrnaeOgfaL4wufFn3jINbxs6M1Mk6G3wv7X/5+qjVEe0IYMVFKgeYwyzj9HonszDylnKfxNtv8eHW0YANTcBfTGHVVs34KaAVAL0+lhixF91IjBhWQ6nOY18CN+5RjbJTU7wNiabuMr3v+9fPWOhoYSiJlotPa85mGlLuuTK4vtK5/l8qfP20HnQVPo5D/vyX/pJTvpbYuJthTOWw3vONb39wx9ueiiEpicZ8dGwrDXrviFz3ey06hLUJjekqAcCM6zBCgi892vtKb/NXd1BCY2R4H0/WaIilBpBMF4e3Wx2912yfqfd327hk73sxoClWCNUaZZ2DdCo0ZzfqWzEI0W5uFHJbDxfOzVQRa8MaW+5+wuBvx0PAAGLK16mea1LFMbIz9HOj5+XgGqYHe+VpnIbePfY/2u/X+fFc3ppeeCgtb2dioZMW5q/wB28d62hPIbVt8AbTeQLT82X/+ll2H3n2mODh0eXhH6oL+/18MaqTPe0wIB8uoIm/1eEHWndMYnK70SXbvnlD1O3U7HDkaohscDDs7uSdXs6mnUPQjvaTXw+OXlXubLykl9IfbC7GEO6v4NTyeqvwedzu8ml2WuDVDbWl15+fewNJ7ZDtWv7SsL3Jch5Kv309T7eW1U74eN2Bmj9uX20r214twv0enO45p4tj+94ndn1N7s9m/Pw/KXVn6jrbaS+3dfh0uX7bvlDjJl3R5nubgraSLj89txfzdApvH3t51t4reos4MM5uSzDNHqQb7gR9HwyAe1v+jL9ejRyj4KfeJqutPDzECjFv//18t9dTsMf6Q9g27dUaBujZ+6ntzdlT2wW7fzo+tqGINgs8sjXWTpusH45kt8bU+0p9x15ePz/Ut7TvRenp2EkguI8vNUNnmuRvSPdt0jBK7Q/1F5stbbvneTr2cv97m3kwmARZptirT2+Xz9Ibtgq+j3tj8jPfs94zfGaGmkrjEL4vlDOBP0M/crDKiSfMvmyW+zaisbOT82pZpV9aaRWGVgoZSRlmc+ydBTrbD61FzPNiOpXcQwjGaHWSdmgR6+v5FEvuJ+/8DW90doeDhYqJVI3JWbj7caEu4P1+aSvHm71+GPKdHs8JwBnidrWcuToST7j0XdWgTl65nY92bdnEGA3o13cYrcHL7rzvwzpOcYqtpsnLzqgIvfSla5Ptd66uHUxVPrU8+zewihiWwwk6UOsAhrXmdQliwEitJX1bpvt3HnTMzeX3qf0OsTi51MzxMdieYXKu1UKDZNkKxnji7Z4evw77S5UB8k4X2q7xzBAweE59gDH1YbSwgnP1epA6P+zn+b7I3Q7nh/a3NmgezHk8BTT0Q2krQ3t/PEqU4MgemwHuKUrTRMqB53FNiVTYSMDBvAst8C12WmR9x3F4qvsb8BAt/yjX3al5OgErYG0K+rXnjq6PMgyAdD9ZKUbFnIZP6RdvOaOxUhA9z761I9Y64GK4r+yxGz6yHaAC4us9tXeeiuFdPpHwCD3XVX04PFlg7ck0EAveluP4FuG2Xoox6hiNgSzMG/d+fBjkcnzIeMs9Vjya7rNrILnQZTwbH5aWBEs+8tpO8b6JE1T4kLfj8Le1ulNu1G6mNrnSA9/Xdj6dWidRJQZY0WQU3Cq7bveajo1c79QRd593bZ62W1uaKBHx0Eov7CXnzigpcwbZ8+p0ob3tLdh53UsxX4MFaUp6nx7q2xB8fRuROFssixYnfSRqvQluNTvY02PDFrBv14/xX/jBu8q0dfEDM+WtDbFea/qVvo6fr0m7347ekrVS3Q6lsm06AW/USgx1o2EUkwM2L/SvyzQ8x32cNOXO0W8tXCffOIILMX0k6yFzJ4XXMghLTabsam0gVL3uXU/e79B+t21CufIPsbFi/ZbBvJ5PUuHloWVzqd0sE2yk6DsB0Az5FB9PVpxpiPfTaKTUpqJaJWwdVksrI+ECnX/VadjVTZRFDR3seZ4675va1EOfgFYYQ8752ItF8NS/VdVSSmkAoG3H1OoRhnVI5RBjc9rsJZos6CXfSoPzNN5/Ieyb5kKHj3pjY+bebOSdC8JKOaNcHmvvhwRHrJYsvXYEJ82AAVJls8rga/noF4tN8IB2LHLyrvSOLVX/bFCgs6rBOHbaVKfOe7HGjj3LE71raHhm7BJHUimqM2bIF6xHh9Gm2YgZjNHeZtYHhHgCl32EiTLUZRxrH6uMksPjRVM7oZ5yYTs9Q4094yzjQeMYGrlsTypZJ12BCMLjZvPsREPsYhA1TAMa/Ow902KsRTbRAT/1yh5MqDz8QX5FLdzZDFbNdLnpUIb8nS4/91fu/kleQQH9YPY2zLLVBc9xPVAw2rJlT7TbyOidK6ZMvdruHAs/nPNrg7JaoK6+dxJH24GHaroRTYgIw2qsBdcABrj3Yv1gWsW997zrl6C50dOwikqtjrxRdIxWPUsWNoNtav1k7qvpPSI73HE0HewyVhG+TNcj+Mqn0kswjsOlGqdzvZpnyta35kRSOveMzgRiBp2XthIeU8z5dnIB6TGzdaFb+yAZkyG2ED/HGe/YnIo1Hb4M3997x2BEURbngJM1aOwns9XVWGvt3t+XwFe+9O0+cZ2kmrm1YbxZdTLB7Rofw3bdaXnKm8hwGQ9Ih8yyboGxu2mrtvuNBt/u+l2eYJje7ye/a7r94+N2rbCv1htRFdi/L3+atl7vdBLZKzACmwr13SlXEQwf//f//uz59svjPo/3PWFoH/c6jfwZu/Tub/XPweItC0v/8NvyUPJkKEO+yrPiQtcEaryTZsjwSqFshWRvu92+X05wr+X+9TLkfnRHar+f+Z3mis4Z/MwskXcPtsF8sreq4M8j74PhKHH2PQzNk1PwUB0ch3c0BPVuvEBCsjC5X9vY2DhEQazh4j0fvllW6F1Oj1gtAo1WH+3hMXdCDFU3/J5avYKZhszuNDn1D38AFuyXwejmqMJr8Md0jO6983JpEO6aW0kcLhZiB+95PLaJMA5NAFgRdXYJc0hqh6W7Ovi7n4jInd3mJ+OH5wfpRrdhKJYhwegjpE5tLmqhnZZqVmOrElWLew14GJ9QiYQcuwwqqZSjLfotGV9k7uRMYFDtWbySGqrOqnBzhtk0+wxmKcfjFDHE39uJmy4AZMKSHCGB+tN87U46oOpAzqZ8p9pQo7W+t0wOItOfZA9HrQcMmNP9WNIbSAXRsVJZubCpkdZAPpupMemxuRhFxE2HDa64LIc3ouAEjfFwGlerBsE6mzehXx7+0MBZY3Bpv2VniIapCa/nCxhS9uCMohnE3IP2qFdZ2el9bUjQDaHJ16Fx14pzrSsHUxxIP/RV3NkW1n7GXnqR3yabp5J905KGWA51yPfbgSigaeQejBg67rFyvS5NU5FPp86SuB8WSBns3ri9dj3e/o7MkFt9N6k3nc0GDVqynJs7/ODI6GSYjaJiu487aK94JZAu0tN25Bi1FpT3iU52wzFO7upttwQTGrLO5s03g3nwudvTTALbLSyBtz1ax2WLYhbYzhfhDTKVrVGmtYMzWz50Qaf9UCqhkX6Tx7jvte3uth0PXJ1NveXb2+y16PRdzkeHQXjl/kMvehyHprgertFUjxNSuV5jfGlHwrpV/CJozCEeX+rXm2Ew1FboQbfijBHLb1BD2S6Wm8Gt4fwX93sF0Jk3qIdQt29Kj1xUjw1eWskmSX5EOwRnh/MEgMzF92sfOamx1i+MrGejzdhmzrhv2Zlmni//iT6sd42bWMOwIoagPA61S7/nkiIlGx70AEcl21s9z7BTlu4gpUDKLR/mQWNx2h8FTVDtubFzRaCUwCL15Duc+mij4f02a76ct28SnQnWPEjcC5D1dScbFLOFXMyL/zzcj8G1AwG1Byg75DwSUDXGjMSwNkuRBguo0NWePDSJmExYBnsxbRcaGM+PfDdh+ivZICeYscJoR/FmJdPVDdN8fLNnKnqajnq0w2I/2mNpBA0k+mp7YUOxrp8iMnVYLkZ2KKzdjIfpxqM1gMYmnQ0nBUaDUjql3jHGUmuqbtCe54v30sEiS+IYa31st2JHPlwYvflws/Q588Nn3u7qDHZgO5kShLsb8jc3eifKdGYJfwW4mEZOjN2lB4OD5MfI79uy1uehIyBO9rAR2fb1R7sxykLMFS+P9cV1Y/Sgd3tZTvsNud2dqXYe3EruuJQHbOvoxdewVNbiCU2DZKewT36+lN/rsXt5Ghqzua/7x/gMe1L3gF3EQ+xJb18mud+r/L2r6vvyvP7+exk9Ko1LcLWV30+jbUjUsgnIbDhXS++otQ/O1Asa6zHd8CFcldDPvKd1/lzbhG421UgeRKdT7QM34y3nk39LYI7nAVGMRZiWuDf1bjDe+tmDyIaPWpo2NaZBUio5TtmHZ3Bcd688mJthRBEn5YzxLVfrzODeSxk2lfI4bem9z4+c9yOqG6Q9LO5VKdGDin/olm5kcEEFeVdr+17ZiLMG3VD+Vjk4P4c0DJllPT1gMnyydoSPPg/DmLKHsO6DxPNW9YhP5a+v8B/OLZOx2OhbmAffsUFn4hcbvkb2AxBv3yqA8dEgB3q9qz3bfFz1eUQTA2rQeyjbiHfrHYKF1hgoZAi1OAUGVed4N5BO58M4lBuM9ui8e2mnsK9rq6dSDVqwAxzeUNsaA5KS02PzVmybz9tvK3/ZdG3tgvsVzESwGxjziofO6pyV+3SBItis1iLhapEowAo512Co1qC1DCkxE4sXi+RrD9oauApWE3eeYhuQZv+RVlAYT980LG5T9b2RXqMDLclUN7W+hkSGx3kefPrWdHUgZMA4tAWPfXJAAgmx1ONJ2Q4uVy0Ih82jGHtEf+H8HXEwHuRebLN9Ge0I2ccq9rH4a8Ch1JIVl4G0sDjepmIb9h0g6jYCHN7cBwNmMV79Xhz11L3J3OcMR6hlJHau9XoN0QxL7Z5MdMGDgmoHNFLfLGx79kAW4oeHAaiRykmwFiXnuOn6QENpCtibM0pD4Hzd+jKJnv022urxuIepoXcW1mIq79CtFDZsZk0EI5O1r0KlZggBiZl8KebUmLI5Lf0q2CZ4aeB3C+Ji+iCeQzEzSCdrEVLLzqjV0Wbio9VTroGGbiwqDdEXAhpdR1SjabPDJGnvQs61o5330Vqf8xKzHzkDmaGBMTAT7Iat2G6HXvnSSXGQXgpeVUuoVrKKA2cqYjbeabLizQG+MwY8xE97yN6BNSmSsydrpWSj1p9SICwB7BprXoc5CPU7clFbj25Kj6CooSHcDGXDHUn39f7VKAbKe2qZ/EhT7fnFbRaHMfK+66qVIm7YmlCtYTxqDQuWVkc1G+vfvj6UXCxwIElmwcKapBydXvZOrWHMrdaCk5C8oJf3rmVIwdnay8Y+b8CYK37vdZW4aVI7ZMNa5V/mT7JvWM3tnSjNXxRoq7z4D2OhedvwfudI36xOSLzj8e75bHcgI0fM9rp0P8twMekMV/RtQrvJPky9UXZutJDHi0A5EOOb2SgEuY5kNdZ3ehp1zcCeDIVYRiIyx8s+LYBzqeMAtTs70GBfLZgTvbepNRPhzqTeyoCKSE7Gi4g9lWQEKlUzk3fQqtNbdEc9bbGQxN1MNXhjHHOS0eqiHmFAAYRQ1V3kQDuLF/98dDAg9snvtItX7JiorWT6TSf1+07daNZdFYCveXvEhv+HeDPGTTPQrS+qrmcQTkSxczC+q3dcTFU1sP77z0DSVljJjx7SfsUYWnfTY77CLU89u4mMCx0BuXc5mjtZPYzvDB/2z1ofbP7V6wd6Mzyb21ENUD7keXa9ojhOTYqfhfhVJrbBOPfg1gYJfX2jYew5ews1pwgXy3AwwVQ/6Bkg2yA2bZTxOdqBt2CddiDXWy/s27bYZghHQVNbK0JhYOiYZtptcEZcRY+NaGfUtg/DNBClp1aMCBE0bWxDfksyAaqQAGy1j3YhrrMa6trqvZTeXKAmL/RHX9886ok/BIaoZk+Lbo3y4vQ1TR303qR9Oe3bJkiGe62NXf0ehRRKxW5tbRKH2j/y8x91TX3H8HqoLEPeZD8Pong8feWrUBNKHFqdDVyPOHApdnokEw4AuYlhntgAqrH5O/MfzWizbGy5MEZt3CXbQPY2UHtZzhZFoSV77JJ+tIy0SNvVliVKY2htq3Y8imcLrbXe3+snC9ZjbF1yVkHkG8iCPW/PhGJyG9Bihcf5uFv38oBFSmSlxTR775H1EMpIqFVzZj82ma/FD/3oy0yWNMQw7df11KNrtxpQLIAIqNVNpXBFA36vt9Ee12E5w2o0c5d8ABzGazda5VCeiLsbTAeMYwMR6MlWw8XZ7ALo+52/gFVKV3aIXA106hS6g5aNJahAanJ3a7aAth2tPRYd+8m+5cJmsdR2qUdDVTNH8aktnbl7PmCr2YQN/i4eBeat1Nh5IOM/pj/lu1RnoVYwpt4xfjLfj0rGlS3n/ULG8F1Gq8e7W0zhiLV4M4bjlvZkoofUdvkB73c93xiPfzUmHyL1I0wylqbNup4BggM9hF13LpprPgRGK4i71bQdao66dxzRgu390V5thhRMKOhjbWfZGYLp/77MlisFGE7J13yuhebCUofEslWRL52zk62asYlayKL5nB1ydVoFJRFW0vBwOdas4hCWk0nWSTNB/E2FAaRp6CYreKXXWu5i53owx/RhY+VgUdDLcajvHZCcGbS9NgXjD/QnqHdG8wnIXWozLM0NiSVAVHJYDdgRShUPB831HkQZOwcqWIN0NEMRl3VsLTqytgmDEjcDrR82Hkn4qzQrbKL2ZG5d0eWrJVQCtWrMx20KXfImdQiml2SVex2MwEBsHgtIVkXGfHf/i10NTs/Lb7dQtpzq6cdg5AYd3tllIeR7YWjSemYzlGogFVu7OxzJ3ZAWrub9M+Ujl0TUtfjuCvJmEVst7JmUEI1qc2TKftRQUfXdPJaNepGkrhYHiZSkcyqPzrbaLYAQNe6AhuXlbOz6iEwYz3Zl6GK6YwfQFLr2ilLN4UZrN7GGhlIGC0c9W26GyA1Wqd6UEXqIPVLXjsbWf3//ioCoRbDFgk2Ba93BkVGFRuAzeUfdPDhDpVszjhaqK5rtkGlaSF30thoScpaooA2dfGO0glWGkFWwGM5GZPVI4k2IR4JoUtOCZ+tsx7Fkb8nHTU+GoYmjtMHDKRl9E6p7jF0Ku57F/kAasdRkadrI0mlcaz6fjVm6ZjJauVfqTnt3vYfRdVZ0aOUMZ08p0YM1nRyB6WhQ6V7BTijryelYW2nnS8mEEUes0UweChPWLBaGkdMufSTslqYh32F0MLfW5mkadjtxSIeon8dhCHlNTS3Zk6zDRBX90E4XYJe6nzVX9YPc9fMdFCT7P5ibYxMcOSfUWQ1koAe7v/JgDHLxSwa3xJPNxrbBNisIdx4N9d6gHranRu6YPDRt6Hxvk68MwMZr6Y9Dc4vm3Zj+FmZRNqkNeyIfFlzfyRsL0L0L1I8UcRzXfRi1Adc/2t/3Gj+3m6nGyVSgJnUSjjDafL5CNFHvNzN0G2jEQpKYOodegissucppPdb6RbWqCvWPBpcx30vTjSEi7DBGasuEgAEG29xWGuYcTsYWLYdpZoVmT7aCWlrMfoU0eWzGJzDJnqb3W7BBCItRN64YjYuUjVVQrBni4LgjpMKKjMsuZ+pBEbHoCIdUDpoykKZJhFjkCAvlxagNE1lmAYPWQDUdWw2ko2zO5RyNBCNznLrbeU5j4HMvaKvo63Juve002LeOXUWttixszofdi0Skmo2vbGyZeVeWDtRq5JSj6XpUfB+XQFr3boxwZS6LdXztimRnp0kMDlK9bW6+9vgQD6s12dPDTDrGsvHOJ/K2dK8iXnQaVhVB6kQPW/W2J+HiuQIRaXHsTAQHrVhysymMpdqf3U5FTU+1jI2zDz55vXt63MoxPkLdfDCDqHYKVqCIdT9YWR2AalfjYvRkDJ16K1Moev3p1HyNceDSWh7dnrGbwQ75O4/eDGv32jD4sZilriJzgeQKIzlbUsC9mfAFzY7jPqIlgRKodnLNQkkwDIBd7d3QtJMzoWwFkKQhG/FWqXejqvEQ7OSVb83Ezl5RCTungsGyVCSp0EryxEmpdpLGLXrbpXdlWIy11TsQKJX1fWnY7dxZAdSqIJFqECRfvBnbYLE1DsCCrnRFA9jzbtE5KspFkhEWxR4m2zX7WTZYbG/a0uEtFWgcAa2iC+W2RHEqit4KVLAyqb5bXDwY0wHVdl6Mq623bj8mAWnlj750cdoaK5tHsw5aj3GUfICLnJ1qNAcDE++9K+L+Zp5HlJD2PRemWR3v0HcrtyvOJwHtXat6wdU7n5Nz9a2H0zyno0np3ApcgqYSWiGUl/gJ871q7zkQm4vR40VOKMVYN/q9Qr5R4T6PeEvVu7XV4v8grDHfhLhky2PosB15ghaMEFbZDSoBG+pNvGtr7ymE0cMHaqPjmsrnaBqXRmIf7BZYx14icug5at0EbDDQRwZLxg+mQDCTZtGFi72EtTnGRSnZvXMfvFpA48zk4bSlH+l+WnIloCFPkow4w+CcN+PNTuuEw4C1WlOL1rY81gSD5k9u9qrYHQ0sEL3l8WfuwiJiuVR256FjXa1layfjusBmRvauclViWhYYreiy5EYn8l39eWJqwcDQbS3z0IqhEClGJ9baFJ6+XusyOmxGJrDenKiNtqu1/eCOGB1b2w/jTdpcD14T6N0HIi+9M1DqWtVa8MVd1gYUBA5E9MjilkX36PQcYSvGhM7WzyGVvbvQI3XoqGCcBaWAoMxgSFTdNOD0LJuYo4LxERztYryBVkZXDXbjCHgiMi6SG2TbbBgEmrksiWjNYNieKG3eKtFoPQ09N1FDCGuiZlspGMNIqUIts+fEZnGYQKrrzVqFVn33d9VWjLSM4XlMxcm9WF9rXrCsJHmAptkFb8SGt1WAx44NpWPnW8BOb6be7Lm2IcdPclulmc6poDnygGvuu7JHBq1HrpC1hgU0360vq9NDGXy+ImjbvbAxERoIphzAaBLQBniUEpzjO2sdYUM6fHBFjSmlAjTRrjWbnozShW436UkIPQcvgxbbDeDRyXTJe+tBDuFRmjUo9yD2rxG15/E0SmpktVRj0tpPtkdQqZ0bI/i81gFbyhEK7a2364rnaaKcTHoHcwhEV7am31N3/bmCTdduIMDB3oFtH5Vteo04TMK9Fd4Cbnma7J7vo6kFIFkDvbCUdDsN5GVy1yNiWfeFXFCWUjrv+1cAuwkbZG3VzCfU1UNupT6PtHM+pBvJauKzK6HztgTumy64fRgBqQcMsy/oX2aUWlgUQn4/eW91iHCIcT7bR6oFgzMCZ8yovE7Big/RYjiZKslqM0SidKagR6veXSgOiF0OJexGOSDZ419Gahfh3HGqpYiHIYgbnIVZqrtYv5+DpQ07Oj6NEW+QW6sKxqEfBoJyvlA7xegqp8MAT+q5C/fWGf3ZarN4h7HvZ8iG7Zz9JsJENDdo8iB1jDCQr9jF9miojQQDyw7ILT6e8RgpS+3VWPWLw2yfLFvbGX1nMq7NlecgzioD1kgd2rGEzUgqGgeqxWit1HjSAQGSWLt09ZVYx7FsXBbftgZoMjYbGAnGk8tWYdghGhNw33vbCbLvdXTCjrJGGfowSE6BwUcpk5P+9n4acikQJycHpa4dgKJrCIxe7KQYLchUhbvD2Rgbc5taNtA3CyPdNuhkNHjtTBBlBWwDoenOwSQMZuDRx5ynEG42xeyMuITcFLXKUVVcy2jIeOfqAXZPVW6sENzgpR9FhPUOQ4zaP5SIUrk9LaqcGgJnhofhuFNgr31fw5JLTwymVTETFPFORkFkskxGS8AC1c6+pTuIgcqbzDbVjq0dRy0j0XBAOzKzc+RTqdGR9Nz8g9zRdYGgdTtprtyvHmor+udh5c2Y1i2qKqCm2rkysoumZ4TOK0+iY7nbws5NdnImal5QwUTX27dsVTuy0y7OKaiJ8EzZcU0+cHM9DorpDQxaUDFFO0uG7sNdCCVgh0A0m4q2K7mLkWDVnTiBD6W7c1nh0u8sXc2MbsGy8jL6KWZ5UOG9NR+QBoQh2vj4cZg5QEz5NmAp0+JD3W52drU2b2I4evDYxXKNdjS3bZrbzoJ9i+TmT7c3zjKEjamZOBXem6PFSy9pkNqaxt7UKDd7nXszwMb2cjetj8a5ZuMIiTLeunio9drZkgmt1SFCM+rAmcFwkU4PtknHcYRdKzsqjCN4Nud06EBCXFEFRsGx9WuzTe2Z2t2dkaswKbugnHYHphqbq/9cE3XVFkzdg2luqp5RAxk1JDkjFn3KmLvvtucwxd5Y4PKYOETprtamU357DqNIziWgdoSGMXMKocrT2NN+MFhMvbaIaG1O3G2MfDeRoKGRnkXUkPajAFih1ru6SFcyFkExDdOpde5sTitDyVksimSOis14biQmcDbbwjsjJ2+nVBm8zyTqLIK0HUQre83dWILDcIfaAXYHzAycSkdu7txrtUAGMW+j3TmzqTlOkdSLRktIRrMEutfuoZUuoTE2cU2JIed2NCdFsLNJ4DujYIZu7vuiGRdlNc5nrDEkRep2tXYoaLTdwahaUGdjLIhSu7iGxAphUjn2z/R6Rh4rpINkTM4K60j7hjMwsLWHLVWtFn7orqmBXjofaQFPax0DFsgGAbFprCv17gMbNOIoKyIvPUk0CRbYaDYtg68oNzUoaNvUQ4NQkEcCA+oLWPTmwV9tG5GLBWv3zpE67dfqAYxLXgt0G6QpGDBBqw29xMFB6OaAublZvFWEaGzy0ZiaCJdceVfG67LU4DYtDdpxTA+a280dHT6KOZCY88E2fziscSTqOBghVDIdcZxYBdpoqsrRwbrUSGnTLttGrRjEWGvRUnvb+MG2OzBRq1zGgL1REdYrdtiRKfNc3rAPIWiVvV65vUXvat3YSstS56Bbq6i7Kqo3anLbyKl/TNFoF0tW2fMHTt126dnhe3kcaxfbqqH2RuX6ZI61+MPaZSJA9LNlE/LEDdR719h2GrAPTxXhxB0BkF1vzlskSxovK4MnTiS9kgHHVb0B5d7UNpmxgsFiRs/WoqEm0kDFDRFS6NzQepHDnw5LoAN0CwkGrIitI+BorBt0mmyvOC18mFKUHFVnewgtBdh787YfwScCNMIkfpq6UM+5wclZR9jZxmiP7mwHNtAFTQyz1smWbrCiU5GRklRvt+4efKuCrbP4eGcozhrIzdsMgB5YalVxFkHRQFLHahvPTsH03nWmj7uZvLJBAFBAPs6OgUB6s2r5PgK3wgatQK1oVXngMsLAvRUI2Jw98uihAymQUdSOApQ3oiAKSpRbbx1ZRRtiU1IXkmgnAA+gzJLqwIKIBsseqxlMBmCRRtyBtIuDJBidVgPMFUWd780KGi8w2Tzkf54mEeta67tp6jrXCBkwpciF2WgNIUtpmaH7036YDwN3Rq+yZ4IrN2ipAu83hyNgzaf2wqrSQJRxGQzlzfTdtXYsUlq+kVuT+uAqOy5SElhbMScxhbvJ6H42+djSaDQf1soELJLYgwu+rKjH0YpGfJ/hbrWz7N2dHJb8DmBhv91e/xHYttakr6OHrjX72guoHE4trcUKUboWYxf+uJ7ti/069UDZ7q50M9Xke+2jsXlC8ElBDWEHJeoERp0m5dK7GKOwngYzt96M5SLjp1pPAqK6UxWLDEzjlG+8TwPjqE7AqcsHtVWDsbFBOhtresWRkjKLcYqmK6vRFifIkTuV/OS4MhJ5CIzSiAfiXZ1itTB2KGgs1Zaa+mGu1uT5DIUSdkHX7EgcbAuRCwXttTBbC7oPgmqCRXTzRkOzoMzchvoGvZRjbHsZlwIkvaXMlit6gtprQ0x98Qi1Y2l+P8ZPgRu3rQHJfqaDtQGKqqWLK5vjjoQlmaGXlhRQG+E4DFy77tp0w+65YxFSveNX047dKzJIb1Ey9FtXsGydak1X05LTVD6NTr45aay0mZ90bdgEXUk82BFq3WY4HPFjrLZCXe8/Lva4O+B+7L5IbxPVIsha2XWA4k+o9RgX+97WikukPfCHGj6uEEGzgNpYmlZou1qUWi22nEN8tHWn0DBYOkpdd+Pho4HUCvdc2bqtPXZOR/LBly0fS6hb/vZvX0JbJZrHugvmStibj4fkQwOU3F22fG+bxb0YLWcfZD8YLeQdHRRwObWWD7rklv9GZuLVu1n6R37nAaP9Pphq4fq2PU8tsY6V9Lijnb5/a3wajAgfTbDxx4j1g6ghIcPF89WUau5X+wJm5L53WyBY03ihO4wDb24R5c6OJmimihVACy1s2LWnlPR0G4x6taLzZgtPJugEexi5FcOT6b1V6Nhv3G/p2bfqlPrOrrMaAH9RJbFBmKshbJL0tHMnLzSH9FGyByfdLW41oddEvrtzaRvLo+tsFiutsIfHwMbr5MCUpsGCGMf1vl3idsQBWUklRzJ2DC3bDuBPDxWTGq1gsaNWNNjtFbGZyahJJVUnyt2WkbTE2yrM6E+AzeUjl+YCtOUE7x/TImt6e/3LeEsd5AAGfwH5vklL41jv47Pv+y2255/51+vs+7ZRLp0wl3MwdNQ9o2P7yR5lZ6utcb1cmpr9Ggxyd/6pt1tGh1ozPQx1PRq3o3gKWu5XKndjmOaDXb+PtV747g830f5+58jU4fkSj7d63z47bxp7ozUBdkrNmk8jrFmMbblLDM92e7kw2etNAS6r4e0dzDz0wtO8RaJ3u713DzSBaofyoQIw+szpX/pwru8ATUmPW1MAgKV95L8CAKwAkO5URABY4Zf1ebbtlYlqBcBqJXetrQpAi9ttB7AdADK3Wxf4z/iYp+NXcO4AgFxNvt2RFQAo6v3jP3P2VQP1e2kHHD3E6O83gCoA0KXRx20Djl72El1rx78r05jNdocRGAoALGs4fp3nGf9d0E/U7uANtA7gLbXBu/UOjgUHESyo/9n53I7/V1AzUz/432uC/5L//wPGh63bDgAAzhjU/T/Px9z+C4kEDP+X7r+Y/fsdZfx35gzbf3VAtv5/d6RY+3+t/P+OMu7/dQcMYP7w/yP2/9/gT/S/doL/laH/T25Pw0S5FV4ZAAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "execution_count": 16,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "image = random.choice(ds['train'])['image']\n",
- "image"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "id": "492e2334",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- " \n",
- " "
- ],
- "text/plain": [
- ""
- ]
- },
- "execution_count": 17,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "audio = mel.image_to_audio(image)\n",
- "Audio(data=audio, rate=mel.get_sample_rate())"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "946fdb4d",
- "metadata": {},
- "source": [
- "### Push model to hub"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "37c0564e",
- "metadata": {},
- "outputs": [],
- "source": [
- "from diffusers.hub_utils import init_git_repo, push_to_hub\n",
- "\n",
- "\n",
- "class AttributeDict(dict):\n",
- "\n",
- " def __getattr__(self, attr):\n",
- " return self[attr]\n",
- "\n",
- " def __setattr__(self, attr, value):\n",
- " self[attr] = value\n",
- "\n",
- "\n",
- "args = AttributeDict({\n",
- " \"hub_model_id\":\n",
- " \"teticio/audio-diffusion-256\",\n",
- " \"output_dir\":\n",
- " \"../ddpm-ema-audio-256-repo\",\n",
- " \"local_rank\":\n",
- " -1,\n",
- " \"hub_token\":\n",
- " open(os.path.join(os.environ['HOME'], '.huggingface/token'), 'rt').read(),\n",
- " \"hub_private_repo\":\n",
- " False,\n",
- " \"overwrite_output_dir\":\n",
- " False\n",
- "})\n",
- "\n",
- "repo = init_git_repo(args, at_init=True)\n",
- "ddpm = DDPMPipeline.from_pretrained('../ddpm-ema-audio-256')\n",
- "push_to_hub(args, ddpm, repo)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "8c8261a0",
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "huggingface",
- "language": "python",
- "name": "huggingface"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.10.4"
- },
- "toc": {
- "base_numbering": 1,
- "nav_menu": {},
- "number_sections": true,
- "sideBar": true,
- "skip_h1_title": false,
- "title_cell": "Table of Contents",
- "title_sidebar": "Contents",
- "toc_cell": false,
- "toc_position": {},
- "toc_section_display": true,
- "toc_window_display": false
- },
- "colab": {
- "provenance": []
- },
- "accelerator": "GPU",
- "gpuClass": "standard"
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}
|