Spaces:
Runtime error
Runtime error
# based on https://github.com/huggingface/diffusers/blob/main/examples/train_unconditional.py | |
import argparse | |
import os | |
import torch | |
import torch.nn.functional as F | |
from accelerate import Accelerator | |
from accelerate.logging import get_logger | |
from datasets import load_from_disk, load_dataset | |
from diffusers import (DiffusionPipeline, DDPMScheduler, UNet2DModel, | |
DDIMScheduler, AutoencoderKL) | |
from diffusers.hub_utils import init_git_repo, push_to_hub | |
from diffusers.optimization import get_scheduler | |
from diffusers.training_utils import EMAModel | |
from torchvision.transforms import ( | |
CenterCrop, | |
Compose, | |
InterpolationMode, | |
Normalize, | |
Resize, | |
ToTensor, | |
) | |
import numpy as np | |
from tqdm.auto import tqdm | |
from librosa.util import normalize | |
import sys | |
sys.path.append('.') | |
sys.path.append('..') | |
from audiodiffusion.mel import Mel | |
from audiodiffusion import LatentAudioDiffusionPipeline, AudioDiffusionPipeline | |
logger = get_logger(__name__) | |
def main(args): | |
output_dir = os.environ.get("SM_MODEL_DIR", None) or args.output_dir | |
logging_dir = os.path.join(output_dir, args.logging_dir) | |
accelerator = Accelerator( | |
gradient_accumulation_steps=args.gradient_accumulation_steps, | |
mixed_precision=args.mixed_precision, | |
log_with="tensorboard", | |
logging_dir=logging_dir, | |
) | |
# Handle the resolutions. | |
try: | |
args.resolution = (int(args.resolution), int(args.resolution)) | |
except: | |
try : | |
args.resolution = tuple(int(x) for x in args.resolution.split(",")) | |
if len(args.resolution) != 2: | |
raise ValueError("Resolution must be a tuple of two integers or a single integer.") | |
except: | |
raise ValueError("Resolution must be a tuple of two integers or a single integer.") | |
assert isinstance(args.resolution, tuple) | |
if args.vae is not None: | |
vqvae = AutoencoderKL.from_pretrained(args.vae) | |
if args.from_pretrained is not None: | |
model = DiffusionPipeline.from_pretrained(args.from_pretrained).unet | |
else: | |
model = UNet2DModel( | |
sample_size=args.resolution | |
if args.vae is None else args.latent_resolution, | |
in_channels=1 | |
if args.vae is None else vqvae.config['latent_channels'], | |
out_channels=1 | |
if args.vae is None else vqvae.config['latent_channels'], | |
layers_per_block=2, | |
block_out_channels=(128, 128, 256, 256, 512, 512), | |
down_block_types=( | |
"DownBlock2D", | |
"DownBlock2D", | |
"DownBlock2D", | |
"DownBlock2D", | |
"AttnDownBlock2D", | |
"DownBlock2D", | |
), | |
up_block_types=( | |
"UpBlock2D", | |
"AttnUpBlock2D", | |
"UpBlock2D", | |
"UpBlock2D", | |
"UpBlock2D", | |
"UpBlock2D", | |
), | |
) | |
if args.scheduler == "ddpm": | |
noise_scheduler = DDPMScheduler( | |
num_train_timesteps=args.num_train_steps, tensor_format="pt") | |
else: | |
noise_scheduler = DDIMScheduler( | |
num_train_timesteps=args.num_train_steps, tensor_format="pt") | |
optimizer = torch.optim.AdamW( | |
model.parameters(), | |
lr=args.learning_rate, | |
betas=(args.adam_beta1, args.adam_beta2), | |
weight_decay=args.adam_weight_decay, | |
eps=args.adam_epsilon, | |
) | |
augmentations = Compose([ | |
Resize(args.resolution, interpolation=InterpolationMode.BILINEAR), | |
CenterCrop(args.resolution), | |
ToTensor(), | |
Normalize([0.5], [0.5]), | |
]) | |
if args.dataset_name is not None: | |
if os.path.exists(args.dataset_name): | |
dataset = load_from_disk(args.dataset_name, | |
args.dataset_config_name)["train"] | |
else: | |
dataset = load_dataset( | |
args.dataset_name, | |
args.dataset_config_name, | |
cache_dir=args.cache_dir, | |
use_auth_token=True if args.use_auth_token else None, | |
split="train", | |
) | |
else: | |
dataset = load_dataset( | |
"imagefolder", | |
data_dir=args.train_data_dir, | |
cache_dir=args.cache_dir, | |
split="train", | |
) | |
def transforms(examples): | |
if args.vae is not None and vqvae.config['in_channels'] == 3: | |
images = [ | |
augmentations(image.convert('RGB')) | |
for image in examples["image"] | |
] | |
else: | |
images = [augmentations(image) for image in examples["image"]] | |
return {"input": images} | |
dataset.set_transform(transforms) | |
train_dataloader = torch.utils.data.DataLoader( | |
dataset, batch_size=args.train_batch_size, shuffle=True) | |
lr_scheduler = get_scheduler( | |
args.lr_scheduler, | |
optimizer=optimizer, | |
num_warmup_steps=args.lr_warmup_steps, | |
num_training_steps=(len(train_dataloader) * args.num_epochs) // | |
args.gradient_accumulation_steps, | |
) | |
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
model, optimizer, train_dataloader, lr_scheduler) | |
ema_model = EMAModel( | |
getattr(model, "module", model), | |
inv_gamma=args.ema_inv_gamma, | |
power=args.ema_power, | |
max_value=args.ema_max_decay, | |
) | |
if args.push_to_hub: | |
repo = init_git_repo(args, at_init=True) | |
if accelerator.is_main_process: | |
run = os.path.split(__file__)[-1].split(".")[0] | |
accelerator.init_trackers(run) | |
mel = Mel(x_res=args.resolution[0], | |
y_res=args.resolution[1], | |
hop_length=args.hop_length) | |
global_step = 0 | |
for epoch in range(args.num_epochs): | |
progress_bar = tqdm(total=len(train_dataloader), | |
disable=not accelerator.is_local_main_process) | |
progress_bar.set_description(f"Epoch {epoch}") | |
if epoch < args.start_epoch: | |
for step in range(len(train_dataloader)): | |
optimizer.step() | |
lr_scheduler.step() | |
progress_bar.update(1) | |
global_step += 1 | |
if epoch == args.start_epoch - 1 and args.use_ema: | |
ema_model.optimization_step = global_step | |
continue | |
model.train() | |
for step, batch in enumerate(train_dataloader): | |
clean_images = batch["input"] | |
if args.vae is not None: | |
vqvae.to(clean_images.device) | |
with torch.no_grad(): | |
clean_images = vqvae.encode( | |
clean_images).latent_dist.sample() | |
# Scale latent images to ensure approximately unit variance | |
clean_images = clean_images * 0.18215 | |
# Sample noise that we'll add to the images | |
noise = torch.randn(clean_images.shape).to(clean_images.device) | |
bsz = clean_images.shape[0] | |
# Sample a random timestep for each image | |
timesteps = torch.randint( | |
0, | |
noise_scheduler.num_train_timesteps, | |
(bsz, ), | |
device=clean_images.device, | |
).long() | |
# Add noise to the clean images according to the noise magnitude at each timestep | |
# (this is the forward diffusion process) | |
noisy_images = noise_scheduler.add_noise(clean_images, noise, | |
timesteps) | |
with accelerator.accumulate(model): | |
# Predict the noise residual | |
noise_pred = model(noisy_images, timesteps)["sample"] | |
loss = F.mse_loss(noise_pred, noise) | |
accelerator.backward(loss) | |
if accelerator.sync_gradients: | |
accelerator.clip_grad_norm_(model.parameters(), 1.0) | |
optimizer.step() | |
lr_scheduler.step() | |
if args.use_ema: | |
ema_model.step(model) | |
optimizer.zero_grad() | |
progress_bar.update(1) | |
global_step += 1 | |
logs = { | |
"loss": loss.detach().item(), | |
"lr": lr_scheduler.get_last_lr()[0], | |
"step": global_step, | |
} | |
if args.use_ema: | |
logs["ema_decay"] = ema_model.decay | |
progress_bar.set_postfix(**logs) | |
accelerator.log(logs, step=global_step) | |
progress_bar.close() | |
accelerator.wait_for_everyone() | |
# Generate sample images for visual inspection | |
if accelerator.is_main_process: | |
if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1: | |
if args.vae is not None: | |
pipeline = LatentAudioDiffusionPipeline( | |
unet=accelerator.unwrap_model( | |
ema_model.averaged_model if args.use_ema else model | |
), | |
vqvae=vqvae, | |
scheduler=noise_scheduler) | |
else: | |
pipeline = AudioDiffusionPipeline( | |
unet=accelerator.unwrap_model( | |
ema_model.averaged_model if args.use_ema else model | |
), | |
scheduler=noise_scheduler, | |
) | |
# save the model | |
if args.push_to_hub: | |
try: | |
push_to_hub( | |
args, | |
pipeline, | |
repo, | |
commit_message=f"Epoch {epoch}", | |
blocking=False, | |
) | |
except NameError: # current version of diffusers has a little bug | |
pass | |
else: | |
pipeline.save_pretrained(output_dir) | |
if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1: | |
generator = torch.manual_seed(42) | |
# run pipeline in inference (sample random noise and denoise) | |
images, (sample_rate, audios) = pipeline( | |
mel=mel, | |
generator=generator, | |
batch_size=args.eval_batch_size, | |
) | |
# denormalize the images and save to tensorboard | |
images = np.array([ | |
np.frombuffer(image.tobytes(), dtype="uint8").reshape( | |
(len(image.getbands()), image.height, image.width)) | |
for image in images | |
]) | |
accelerator.trackers[0].writer.add_images( | |
"test_samples", images, epoch) | |
for _, audio in enumerate(audios): | |
accelerator.trackers[0].writer.add_audio( | |
f"test_audio_{_}", | |
normalize(audio), | |
epoch, | |
sample_rate=sample_rate, | |
) | |
accelerator.wait_for_everyone() | |
accelerator.end_training() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser( | |
description="Simple example of a training script.") | |
parser.add_argument("--local_rank", type=int, default=-1) | |
parser.add_argument("--dataset_name", type=str, default=None) | |
parser.add_argument("--dataset_config_name", type=str, default=None) | |
parser.add_argument( | |
"--train_data_dir", | |
type=str, | |
default=None, | |
help="A folder containing the training data.", | |
) | |
parser.add_argument("--output_dir", type=str, default="ddpm-model-64") | |
parser.add_argument("--overwrite_output_dir", type=bool, default=False) | |
parser.add_argument("--cache_dir", type=str, default=None) | |
parser.add_argument("--resolution", type=str, default="256") | |
parser.add_argument("--train_batch_size", type=int, default=16) | |
parser.add_argument("--eval_batch_size", type=int, default=16) | |
parser.add_argument("--num_epochs", type=int, default=100) | |
parser.add_argument("--save_images_epochs", type=int, default=10) | |
parser.add_argument("--save_model_epochs", type=int, default=10) | |
parser.add_argument("--gradient_accumulation_steps", type=int, default=1) | |
parser.add_argument("--learning_rate", type=float, default=1e-4) | |
parser.add_argument("--lr_scheduler", type=str, default="cosine") | |
parser.add_argument("--lr_warmup_steps", type=int, default=500) | |
parser.add_argument("--adam_beta1", type=float, default=0.95) | |
parser.add_argument("--adam_beta2", type=float, default=0.999) | |
parser.add_argument("--adam_weight_decay", type=float, default=1e-6) | |
parser.add_argument("--adam_epsilon", type=float, default=1e-08) | |
parser.add_argument("--use_ema", type=bool, default=True) | |
parser.add_argument("--ema_inv_gamma", type=float, default=1.0) | |
parser.add_argument("--ema_power", type=float, default=3 / 4) | |
parser.add_argument("--ema_max_decay", type=float, default=0.9999) | |
parser.add_argument("--push_to_hub", type=bool, default=False) | |
parser.add_argument("--use_auth_token", type=bool, default=False) | |
parser.add_argument("--hub_token", type=str, default=None) | |
parser.add_argument("--hub_model_id", type=str, default=None) | |
parser.add_argument("--hub_private_repo", type=bool, default=False) | |
parser.add_argument("--logging_dir", type=str, default="logs") | |
parser.add_argument( | |
"--mixed_precision", | |
type=str, | |
default="no", | |
choices=["no", "fp16", "bf16"], | |
help=( | |
"Whether to use mixed precision. Choose" | |
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." | |
"and an Nvidia Ampere GPU."), | |
) | |
parser.add_argument("--hop_length", type=int, default=512) | |
parser.add_argument("--from_pretrained", type=str, default=None) | |
parser.add_argument("--start_epoch", type=int, default=0) | |
parser.add_argument("--num_train_steps", type=int, default=1000) | |
parser.add_argument("--latent_resolution", type=int, default=None) | |
parser.add_argument("--scheduler", | |
type=str, | |
default="ddpm", | |
help="ddpm or ddim") | |
parser.add_argument("--vae", | |
type=str, | |
default=None, | |
help="pretrained VAE model for latent diffusion") | |
args = parser.parse_args() | |
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
if env_local_rank != -1 and env_local_rank != args.local_rank: | |
args.local_rank = env_local_rank | |
if args.dataset_name is None and args.train_data_dir is None: | |
raise ValueError( | |
"You must specify either a dataset name from the hub or a train data directory." | |
) | |
if args.dataset_name is not None and args.dataset_name == args.hub_model_id: | |
raise ValueError( | |
"The local dataset name must be different from the hub model id.") | |
main(args) | |