Spaces:
Runtime error
Runtime error
File size: 6,953 Bytes
869c0ac 02a7301 869c0ac e66133f 869c0ac e66133f 869c0ac e66133f 869c0ac e66133f 869c0ac e66133f 869c0ac aedf71e e66133f aedf71e 600e950 8741d10 600e950 8741d10 600e950 aedf71e 869c0ac 600e950 869c0ac aedf71e 869c0ac e66133f 869c0ac d533c9c 869c0ac e66133f 44acd97 e66133f 44acd97 e66133f 9725e54 e66133f 9725e54 e66133f 869c0ac 600e950 869c0ac aedf71e 869c0ac e66133f 869c0ac e66133f 869c0ac e66133f 869c0ac e66133f 869c0ac e66133f 869c0ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
{
"cells": [
{
"cell_type": "markdown",
"id": "62c5865f",
"metadata": {},
"source": [
"<a href=\"https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/test_model.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6c7800a6",
"metadata": {},
"outputs": [],
"source": [
"try:\n",
" # are we running on Google Colab?\n",
" import google.colab\n",
" !git clone -q https://github.com/teticio/audio-diffusion.git\n",
" %cd audio-diffusion\n",
" !pip install -q -r requirements.txt\n",
"except:\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b447e2c4",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import sys\n",
"sys.path.insert(0, os.path.dirname(os.path.abspath(\"\")))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c2fc0e7a",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import random\n",
"import numpy as np\n",
"from datasets import load_dataset\n",
"from IPython.display import Audio\n",
"from audiodiffusion.mel import Mel\n",
"from audiodiffusion import AudioDiffusion"
]
},
{
"cell_type": "markdown",
"id": "7fd945bb",
"metadata": {},
"source": [
"### Select model"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "97f24046",
"metadata": {},
"outputs": [],
"source": [
"#@markdown teticio/audio-diffusion-256 - trained on my Spotify \"liked\" playlist\n",
"\n",
"#@markdown teticio/audio-diffusion-breaks-256 - trained on samples used in music\n",
"\n",
"#@markdown teticio/audio-diffusion-instrumental-hiphop-256 - trained on instrumental hiphop\n",
"\n",
"model_id = \"teticio/audio-diffusion-256\" #@param [\"teticio/audio-diffusion-256\", \"teticio/audio-diffusion-breaks-256\", \"audio-diffusion-instrumenal-hiphop-256\"]"
]
},
{
"cell_type": "markdown",
"id": "011fb5a1",
"metadata": {},
"source": [
"### Run model inference to generate mel spectrogram, audios and loops"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a3d45c36",
"metadata": {},
"outputs": [],
"source": [
"audio_diffusion = AudioDiffusion(model_id=model_id)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b809fed5",
"metadata": {},
"outputs": [],
"source": [
"generator = torch.Generator()\n",
"for _ in range(10):\n",
" print(f'Seed = {generator.seed()}')\n",
" image, (sample_rate, audio) = audio_diffusion.generate_spectrogram_and_audio(generator)\n",
" display(image)\n",
" display(Audio(audio, rate=sample_rate))\n",
" loop = AudioDiffusion.loop_it(audio, sample_rate)\n",
" if loop is not None:\n",
" display(Audio(loop, rate=sample_rate))\n",
" else:\n",
" print(\"Unable to determine loop points\")"
]
},
{
"cell_type": "markdown",
"id": "0bb03e33",
"metadata": {},
"source": [
"### Generate variations of audios"
]
},
{
"cell_type": "markdown",
"id": "80e5b5fa",
"metadata": {},
"source": [
"Try playing around with `start_steps`. Values closer to zero will produce new samples, while values closer to `steps` will produce samples more faithful to the original. You can also try generatring variations of a `slice` of an `audio_file` instead of passing in a `raw_audio`."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a7e637e5",
"metadata": {},
"outputs": [],
"source": [
"seed = 16183389798189209330 #@param {type:\"long\"}\n",
"image, (sample_rate,\n",
" audio) = audio_diffusion.generate_spectrogram_and_audio_from_audio(\n",
" generator=torch.Generator().manual_seed(seed))\n",
"display(image)\n",
"display(Audio(audio, rate=sample_rate))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a0fefe28",
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"start_steps = 500 #@param {type:\"slider\", min:0, max:1000, step:10}\n",
"loop = AudioDiffusion.loop_it(audio, sample_rate, loops=1)\n",
"for variation in range(12):\n",
" image2, (\n",
" sample_rate, audio2\n",
" ) = audio_diffusion.generate_spectrogram_and_audio_from_audio(\n",
" raw_audio=audio,\n",
" slice=0,\n",
" start_step=start_steps,\n",
" steps=1000)\n",
" display(image2)\n",
" display(Audio(audio2, rate=sample_rate))\n",
" loop = np.concatenate([loop, AudioDiffusion.loop_it(audio2, sample_rate, loops=1)])\n",
"display(Audio(loop, rate=sample_rate))"
]
},
{
"cell_type": "markdown",
"id": "ef54cef3",
"metadata": {},
"source": [
"### Compare results with random sample from training set"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f028a3c8",
"metadata": {},
"outputs": [],
"source": [
"mel = Mel(x_res=256, y_res=256)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "269ee816",
"metadata": {},
"outputs": [],
"source": [
"ds = load_dataset(model_id)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b9023846",
"metadata": {},
"outputs": [],
"source": [
"image = random.choice(ds['train'])['image']\n",
"image"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "492e2334",
"metadata": {},
"outputs": [],
"source": [
"audio = mel.image_to_audio(image)\n",
"Audio(data=audio, rate=mel.get_sample_rate())"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c59bcc0f",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"provenance": []
},
"gpuClass": "standard",
"kernelspec": {
"display_name": "huggingface",
"language": "python",
"name": "huggingface"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|