File size: 10,919 Bytes
1e2f8be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import tensorflow as tf
import tensorflow_hub as hub

import requests
from PIL import Image
from io import BytesIO

import matplotlib.pyplot as plt
import numpy as np
import gradio as gr

#@title Helper functions for loading image (hidden)

original_image_cache = {}

def preprocess_image(image):
  image = np.array(image)
  # reshape into shape [batch_size, height, width, num_channels]
  img_reshaped = tf.reshape(image, [1, image.shape[0], image.shape[1], image.shape[2]])
  # Use `convert_image_dtype` to convert to floats in the [0,1] range.
  image = tf.image.convert_image_dtype(img_reshaped, tf.float32)
  return image

def load_image_from_url(img_url):
  """Returns an image with shape [1, height, width, num_channels]."""
  user_agent = {'User-agent': 'Colab Sample (https://tensorflow.org)'}
  response = requests.get(img_url, headers=user_agent)
  image = Image.open(BytesIO(response.content))
  image = preprocess_image(image)
  return image

def load_image(image_url, image_size=256, dynamic_size=False, max_dynamic_size=512):
  """Loads and preprocesses images."""
  # Cache image file locally.
  if image_url in original_image_cache:
    img = original_image_cache[image_url]
  elif image_url.startswith('https://'):
    img = load_image_from_url(image_url)
  else:
    fd = tf.io.gfile.GFile(image_url, 'rb')
    img = preprocess_image(Image.open(fd))
  original_image_cache[image_url] = img
  # Load and convert to float32 numpy array, add batch dimension, and normalize to range [0, 1].
  img_raw = img
  if tf.reduce_max(img) > 1.0:
    img = img / 255.
  if len(img.shape) == 3:
    img = tf.stack([img, img, img], axis=-1)
  if not dynamic_size:
    img = tf.image.resize_with_pad(img, image_size, image_size)
  elif img.shape[1] > max_dynamic_size or img.shape[2] > max_dynamic_size:
    img = tf.image.resize_with_pad(img, max_dynamic_size, max_dynamic_size)
  return img, img_raw



image_size = 224
dynamic_size = False

model_name = "efficientnetv2-s" 

model_handle_map = {
  "efficientnetv2-s": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_s/classification/2",
  "efficientnetv2-m": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_m/classification/2",
  "efficientnetv2-l": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_l/classification/2",
  "efficientnetv2-s-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_s/classification/2",
  "efficientnetv2-m-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_m/classification/2",
  "efficientnetv2-l-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_l/classification/2",
  "efficientnetv2-xl-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_xl/classification/2",
  "efficientnetv2-b0-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_b0/classification/2",
  "efficientnetv2-b1-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_b1/classification/2",
  "efficientnetv2-b2-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_b2/classification/2",
  "efficientnetv2-b3-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_b3/classification/2",
  "efficientnetv2-s-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_s/classification/2",
  "efficientnetv2-m-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_m/classification/2",
  "efficientnetv2-l-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_l/classification/2",
  "efficientnetv2-xl-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_xl/classification/2",
  "efficientnetv2-b0-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_b0/classification/2",
  "efficientnetv2-b1-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_b1/classification/2",
  "efficientnetv2-b2-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_b2/classification/2",
  "efficientnetv2-b3-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_b3/classification/2",
  "efficientnetv2-b0": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_b0/classification/2",
  "efficientnetv2-b1": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_b1/classification/2",
  "efficientnetv2-b2": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_b2/classification/2",
  "efficientnetv2-b3": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_b3/classification/2",
  "efficientnet_b0": "https://tfhub.dev/tensorflow/efficientnet/b0/classification/1",
  "efficientnet_b1": "https://tfhub.dev/tensorflow/efficientnet/b1/classification/1",
  "efficientnet_b2": "https://tfhub.dev/tensorflow/efficientnet/b2/classification/1",
  "efficientnet_b3": "https://tfhub.dev/tensorflow/efficientnet/b3/classification/1",
  "efficientnet_b4": "https://tfhub.dev/tensorflow/efficientnet/b4/classification/1",
  "efficientnet_b5": "https://tfhub.dev/tensorflow/efficientnet/b5/classification/1",
  "efficientnet_b6": "https://tfhub.dev/tensorflow/efficientnet/b6/classification/1",
  "efficientnet_b7": "https://tfhub.dev/tensorflow/efficientnet/b7/classification/1",
  "bit_s-r50x1": "https://tfhub.dev/google/bit/s-r50x1/ilsvrc2012_classification/1",
  "inception_v3": "https://tfhub.dev/google/imagenet/inception_v3/classification/4",
  "inception_resnet_v2": "https://tfhub.dev/google/imagenet/inception_resnet_v2/classification/4",
  "resnet_v1_50": "https://tfhub.dev/google/imagenet/resnet_v1_50/classification/4",
  "resnet_v1_101": "https://tfhub.dev/google/imagenet/resnet_v1_101/classification/4",
  "resnet_v1_152": "https://tfhub.dev/google/imagenet/resnet_v1_152/classification/4",
  "resnet_v2_50": "https://tfhub.dev/google/imagenet/resnet_v2_50/classification/4",
  "resnet_v2_101": "https://tfhub.dev/google/imagenet/resnet_v2_101/classification/4",
  "resnet_v2_152": "https://tfhub.dev/google/imagenet/resnet_v2_152/classification/4",
  "nasnet_large": "https://tfhub.dev/google/imagenet/nasnet_large/classification/4",
  "nasnet_mobile": "https://tfhub.dev/google/imagenet/nasnet_mobile/classification/4",
  "pnasnet_large": "https://tfhub.dev/google/imagenet/pnasnet_large/classification/4",
  "mobilenet_v2_100_224": "https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/classification/4",
  "mobilenet_v2_130_224": "https://tfhub.dev/google/imagenet/mobilenet_v2_130_224/classification/4",
  "mobilenet_v2_140_224": "https://tfhub.dev/google/imagenet/mobilenet_v2_140_224/classification/4",
  "mobilenet_v3_small_100_224": "https://tfhub.dev/google/imagenet/mobilenet_v3_small_100_224/classification/5",
  "mobilenet_v3_small_075_224": "https://tfhub.dev/google/imagenet/mobilenet_v3_small_075_224/classification/5",
  "mobilenet_v3_large_100_224": "https://tfhub.dev/google/imagenet/mobilenet_v3_large_100_224/classification/5",
  "mobilenet_v3_large_075_224": "https://tfhub.dev/google/imagenet/mobilenet_v3_large_075_224/classification/5",
}

model_image_size_map = {
  "efficientnetv2-s": 384,
  "efficientnetv2-m": 480,
  "efficientnetv2-l": 480,
  "efficientnetv2-b0": 224,
  "efficientnetv2-b1": 240,
  "efficientnetv2-b2": 260,
  "efficientnetv2-b3": 300,
  "efficientnetv2-s-21k": 384,
  "efficientnetv2-m-21k": 480,
  "efficientnetv2-l-21k": 480,
  "efficientnetv2-xl-21k": 512,
  "efficientnetv2-b0-21k": 224,
  "efficientnetv2-b1-21k": 240,
  "efficientnetv2-b2-21k": 260,
  "efficientnetv2-b3-21k": 300,
  "efficientnetv2-s-21k-ft1k": 384,
  "efficientnetv2-m-21k-ft1k": 480,
  "efficientnetv2-l-21k-ft1k": 480,
  "efficientnetv2-xl-21k-ft1k": 512,
  "efficientnetv2-b0-21k-ft1k": 224,
  "efficientnetv2-b1-21k-ft1k": 240,
  "efficientnetv2-b2-21k-ft1k": 260,
  "efficientnetv2-b3-21k-ft1k": 300, 
  "efficientnet_b0": 224,
  "efficientnet_b1": 240,
  "efficientnet_b2": 260,
  "efficientnet_b3": 300,
  "efficientnet_b4": 380,
  "efficientnet_b5": 456,
  "efficientnet_b6": 528,
  "efficientnet_b7": 600,
  "inception_v3": 299,
  "inception_resnet_v2": 299,
  "mobilenet_v2_100_224": 224,
  "mobilenet_v2_130_224": 224,
  "mobilenet_v2_140_224": 224,
  "nasnet_large": 331,
  "nasnet_mobile": 224,
  "pnasnet_large": 331,
  "resnet_v1_50": 224,
  "resnet_v1_101": 224,
  "resnet_v1_152": 224,
  "resnet_v2_50": 224,
  "resnet_v2_101": 224,
  "resnet_v2_152": 224,
  "mobilenet_v3_small_100_224": 224,
  "mobilenet_v3_small_075_224": 224,
  "mobilenet_v3_large_100_224": 224,
  "mobilenet_v3_large_075_224": 224,
}

model_handle = model_handle_map[model_name]


max_dynamic_size = 512
if model_name in model_image_size_map:
  image_size = model_image_size_map[model_name]
  dynamic_size = False
  print(f"Images will be converted to {image_size}x{image_size}")
else:
  dynamic_size = True
  print(f"Images will be capped to a max size of {max_dynamic_size}x{max_dynamic_size}")

labels_file = "https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt"

#download labels and creates a maps
downloaded_file = tf.keras.utils.get_file("labels.txt", origin=labels_file)

classes = []

with open(downloaded_file) as f:
  labels = f.readlines()
  classes = [l.strip() for l in labels]


classifier = hub.load(model_handle)


def inference(img):
  image, original_image = load_image(img, image_size, dynamic_size, max_dynamic_size)  
  
  
  input_shape = image.shape
  warmup_input = tf.random.uniform(input_shape, 0, 1.0)
  warmup_logits = classifier(warmup_input).numpy()
  
  # Run model on image
  probabilities = tf.nn.softmax(classifier(image)).numpy()
  
  top_5 = tf.argsort(probabilities, axis=-1, direction="DESCENDING")[0][:5].numpy()
  np_classes = np.array(classes)
  
  # Some models include an additional 'background' class in the predictions, so
  # we must account for this when reading the class labels.
  includes_background_class = probabilities.shape[1] == 1001
  result = {}
  for i, item in enumerate(top_5):
    class_index = item if includes_background_class else item + 1
    line = f'({i+1}) {class_index:4} - {classes[class_index]}: {probabilities[0][top_5][i]}'
    result[classes[class_index]] = probabilities[0][top_5][i].item()
  return result

title="efficientnetv2-s"
description="Gradio Demo for efficientnetv2-s: EfficientNet V2 are a family of image classification models, which achieve better parameter efficiency and faster training speed than prior arts. To use it, simply upload your image or click on one of the examples to load them. Read more at the links below"
article = "<p style='text-align: center'><a href='https://tfhub.dev/google/collections/efficientnet_v2/1' target='_blank'>Tensorflow Hub</a></p>"
examples=[['apple1.jpg']]
gr.Interface(inference,gr.inputs.Image(type="filepath"),"label",title=title,description=description,article=article,examples=examples).launch(enable_queue=True)