Spaces:
Sleeping
Sleeping
""" | |
Prediction interface for Cog ⚙️ | |
https://github.com/replicate/cog/blob/main/docs/python.md | |
""" | |
import copy | |
import os | |
from typing import List | |
import numpy as np | |
from PIL import Image | |
from cog import BasePredictor, BaseModel, Input, Path | |
from fooocusapi.utils.lora_manager import LoraManager | |
from fooocusapi.utils.file_utils import output_dir | |
from fooocusapi.models.common.task import GenerationFinishReason | |
from fooocusapi.configs.default import ( | |
available_aspect_ratios, | |
uov_methods, | |
outpaint_expansions, | |
default_styles, | |
default_base_model_name, | |
default_refiner_model_name, | |
default_loras, | |
default_refiner_switch, | |
default_cfg_scale, | |
default_prompt_negative | |
) | |
from fooocusapi.parameters import ImageGenerationParams | |
from fooocusapi.task_queue import TaskType | |
class Output(BaseModel): | |
""" | |
Output model | |
""" | |
seeds: List[str] | |
paths: List[Path] | |
class Predictor(BasePredictor): | |
"""Predictor""" | |
def setup(self) -> None: | |
""" | |
Load the model into memory to make running multiple predictions efficient | |
""" | |
from main import pre_setup | |
pre_setup() | |
def predict( | |
self, | |
prompt: str = Input( | |
default='', | |
description="Prompt for image generation"), | |
negative_prompt: str = Input( | |
default=default_prompt_negative, | |
description="Negative prompt for image generation"), | |
style_selections: str = Input( | |
default=','.join(default_styles), | |
description="Fooocus styles applied for image generation, separated by comma"), | |
performance_selection: str = Input( | |
default='Speed', | |
choices=['Speed', 'Quality', 'Extreme Speed', 'Lightning'], | |
description="Performance selection"), | |
aspect_ratios_selection: str = Input( | |
default='1152*896', | |
choices=available_aspect_ratios, | |
description="The generated image's size"), | |
image_number: int = Input( | |
default=1, | |
ge=1, le=8, | |
description="How many image to generate"), | |
image_seed: int = Input( | |
default=-1, | |
description="Seed to generate image, -1 for random"), | |
use_default_loras: bool = Input( | |
default=True, | |
description="Use default LoRAs"), | |
loras_custom_urls: str = Input( | |
default="", | |
description="Custom LoRAs URLs in the format 'url,weight' provide multiple separated by ; (example 'url1,0.3;url2,0.1')"), | |
sharpness: float = Input( | |
default=2.0, | |
ge=0.0, le=30.0), | |
guidance_scale: float = Input( | |
default=default_cfg_scale, | |
ge=1.0, le=30.0), | |
refiner_switch: float = Input( | |
default=default_refiner_switch, | |
ge=0.1, le=1.0), | |
uov_input_image: Path = Input( | |
default=None, | |
description="Input image for upscale or variation, keep None for not upscale or variation"), | |
uov_method: str = Input( | |
default='Disabled', | |
choices=uov_methods), | |
uov_upscale_value: float = Input( | |
default=0, | |
description="Only when Upscale (Custom)"), | |
inpaint_additional_prompt: str = Input( | |
default='', | |
description="Prompt for image generation"), | |
inpaint_input_image: Path = Input( | |
default=None, | |
description="Input image for inpaint or outpaint, keep None for not inpaint or outpaint. Please noticed, `uov_input_image` has bigger priority is not None."), | |
inpaint_input_mask: Path = Input( | |
default=None, | |
description="Input mask for inpaint"), | |
outpaint_selections: str = Input( | |
default='', | |
description="Outpaint expansion selections, literal 'Left', 'Right', 'Top', 'Bottom' separated by comma"), | |
outpaint_distance_left: int = Input( | |
default=0, | |
description="Outpaint expansion distance from Left of the image"), | |
outpaint_distance_top: int = Input( | |
default=0, | |
description="Outpaint expansion distance from Top of the image"), | |
outpaint_distance_right: int = Input( | |
default=0, | |
description="Outpaint expansion distance from Right of the image"), | |
outpaint_distance_bottom: int = Input( | |
default=0, | |
description="Outpaint expansion distance from Bottom of the image"), | |
cn_img1: Path = Input( | |
default=None, | |
description="Input image for image prompt. If all cn_img[n] are None, image prompt will not applied."), | |
cn_stop1: float = Input( | |
default=None, | |
ge=0, le=1, | |
description="Stop at for image prompt, None for default value"), | |
cn_weight1: float = Input( | |
default=None, | |
ge=0, le=2, | |
description="Weight for image prompt, None for default value"), | |
cn_type1: str = Input( | |
default='ImagePrompt', | |
choices=['ImagePrompt', 'FaceSwap', 'PyraCanny', 'CPDS'], | |
description="ControlNet type for image prompt"), | |
cn_img2: Path = Input( | |
default=None, | |
description="Input image for image prompt. If all cn_img[n] are None, image prompt will not applied."), | |
cn_stop2: float = Input( | |
default=None, | |
ge=0, le=1, | |
description="Stop at for image prompt, None for default value"), | |
cn_weight2: float = Input( | |
default=None, | |
ge=0, le=2, | |
description="Weight for image prompt, None for default value"), | |
cn_type2: str = Input( | |
default='ImagePrompt', | |
choices=['ImagePrompt', 'FaceSwap', 'PyraCanny', 'CPDS'], | |
description="ControlNet type for image prompt"), | |
cn_img3: Path = Input( | |
default=None, | |
description="Input image for image prompt. If all cn_img[n] are None, image prompt will not applied."), | |
cn_stop3: float = Input( | |
default=None, | |
ge=0, le=1, | |
description="Stop at for image prompt, None for default value"), | |
cn_weight3: float = Input( | |
default=None, | |
ge=0, le=2, | |
description="Weight for image prompt, None for default value"), | |
cn_type3: str = Input( | |
default='ImagePrompt', | |
choices=['ImagePrompt', 'FaceSwap', 'PyraCanny', 'CPDS'], | |
description="ControlNet type for image prompt"), | |
cn_img4: Path = Input( | |
default=None, | |
description="Input image for image prompt. If all cn_img[n] are None, image prompt will not applied."), | |
cn_stop4: float = Input( | |
default=None, | |
ge=0, le=1, | |
description="Stop at for image prompt, None for default value"), | |
cn_weight4: float = Input( | |
default=None, | |
ge=0, le=2, | |
description="Weight for image prompt, None for default value"), | |
cn_type4: str = Input( | |
default='ImagePrompt', | |
choices=['ImagePrompt', 'FaceSwap', 'PyraCanny', 'CPDS'], | |
description="ControlNet type for image prompt") | |
) -> Output: | |
"""Run a single prediction on the model""" | |
from modules import flags | |
from modules.sdxl_styles import legal_style_names | |
from fooocusapi.worker import blocking_get_task_result, worker_queue | |
base_model_name = default_base_model_name | |
refiner_model_name = default_refiner_model_name | |
lora_manager = LoraManager() | |
# Use default loras if selected | |
loras = copy.copy(default_loras) if use_default_loras else [] | |
# add custom user loras if provided | |
if loras_custom_urls: | |
urls = [url.strip() for url in loras_custom_urls.split(';')] | |
loras_with_weights = [url.split(',') for url in urls] | |
custom_lora_paths = lora_manager.check([lw[0] for lw in loras_with_weights]) | |
custom_loras = [[path, float(lw[1]) if len(lw) > 1 else 1.0] for path, lw in | |
zip(custom_lora_paths, loras_with_weights)] | |
loras.extend(custom_loras) | |
style_selections_arr = [] | |
for s in style_selections.strip().split(','): | |
style = s.strip() | |
if style in legal_style_names: | |
style_selections_arr.append(style) | |
if uov_input_image is not None: | |
im = Image.open(str(uov_input_image)) | |
uov_input_image = np.array(im) | |
inpaint_input_image_dict = None | |
if inpaint_input_image is not None: | |
im = Image.open(str(inpaint_input_image)) | |
inpaint_input_image = np.array(im) | |
if inpaint_input_mask is not None: | |
im = Image.open(str(inpaint_input_mask)) | |
inpaint_input_mask = np.array(im) | |
inpaint_input_image_dict = { | |
'image': inpaint_input_image, | |
'mask': inpaint_input_mask | |
} | |
outpaint_selections_arr = [] | |
for e in outpaint_selections.strip().split(','): | |
expansion = e.strip() | |
if expansion in outpaint_expansions: | |
outpaint_selections_arr.append(expansion) | |
image_prompts = [] | |
image_prompt_config = [ | |
(cn_img1, cn_stop1, cn_weight1, cn_type1), | |
(cn_img2, cn_stop2, cn_weight2, cn_type2), | |
(cn_img3, cn_stop3, cn_weight3, cn_type3), | |
(cn_img4, cn_stop4, cn_weight4, cn_type4)] | |
for config in image_prompt_config: | |
cn_img, cn_stop, cn_weight, cn_type = config | |
if cn_img is not None: | |
im = Image.open(str(cn_img)) | |
cn_img = np.array(im) | |
if cn_stop is None: | |
cn_stop = flags.default_parameters[cn_type][0] | |
if cn_weight is None: | |
cn_weight = flags.default_parameters[cn_type][1] | |
image_prompts.append((cn_img, cn_stop, cn_weight, cn_type)) | |
advanced_params = None | |
params = ImageGenerationParams( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
style_selections=style_selections_arr, | |
performance_selection=performance_selection, | |
aspect_ratios_selection=aspect_ratios_selection, | |
image_number=image_number, | |
image_seed=image_seed, | |
sharpness=sharpness, | |
guidance_scale=guidance_scale, | |
base_model_name=base_model_name, | |
refiner_model_name=refiner_model_name, | |
refiner_switch=refiner_switch, | |
loras=loras, | |
uov_input_image=uov_input_image, | |
uov_method=uov_method, | |
upscale_value=uov_upscale_value, | |
outpaint_selections=outpaint_selections_arr, | |
inpaint_input_image=inpaint_input_image_dict, | |
image_prompts=image_prompts, | |
advanced_params=advanced_params, | |
inpaint_additional_prompt=inpaint_additional_prompt, | |
outpaint_distance_left=outpaint_distance_left, | |
outpaint_distance_top=outpaint_distance_top, | |
outpaint_distance_right=outpaint_distance_right, | |
outpaint_distance_bottom=outpaint_distance_bottom, | |
save_meta=True, | |
meta_scheme='fooocus', | |
save_extension='png', | |
save_name='', | |
require_base64=False, | |
) | |
print(f"[Predictor Predict] Params: {params.__dict__}") | |
async_task = worker_queue.add_task( | |
TaskType.text_2_img, | |
params) | |
if async_task is None: | |
print("[Task Queue] The task queue has reached limit") | |
raise Exception("The task queue has reached limit.") | |
results = blocking_get_task_result(async_task.job_id) | |
output_paths: List[Path] = [] | |
output_seeds: List[str] = [] | |
for r in results: | |
if r.finish_reason == GenerationFinishReason.success and r.im is not None: | |
output_seeds.append(r.seed) | |
output_paths.append(Path(os.path.join(output_dir, r.im))) | |
print(f"[Predictor Predict] Finished with {len(output_paths)} images") | |
if len(output_paths) == 0: | |
raise Exception("Process failed.") | |
return Output(seeds=output_seeds, paths=output_paths) | |