MTO-TCP / predict.py
ishworrsubedii's picture
Updated the latest changes
36cd99b
raw
history blame
12.5 kB
"""
Prediction interface for Cog ⚙️
https://github.com/replicate/cog/blob/main/docs/python.md
"""
import copy
import os
from typing import List
import numpy as np
from PIL import Image
from cog import BasePredictor, BaseModel, Input, Path
from fooocusapi.utils.lora_manager import LoraManager
from fooocusapi.utils.file_utils import output_dir
from fooocusapi.models.common.task import GenerationFinishReason
from fooocusapi.configs.default import (
available_aspect_ratios,
uov_methods,
outpaint_expansions,
default_styles,
default_base_model_name,
default_refiner_model_name,
default_loras,
default_refiner_switch,
default_cfg_scale,
default_prompt_negative
)
from fooocusapi.parameters import ImageGenerationParams
from fooocusapi.task_queue import TaskType
class Output(BaseModel):
"""
Output model
"""
seeds: List[str]
paths: List[Path]
class Predictor(BasePredictor):
"""Predictor"""
def setup(self) -> None:
"""
Load the model into memory to make running multiple predictions efficient
"""
from main import pre_setup
pre_setup()
def predict(
self,
prompt: str = Input(
default='',
description="Prompt for image generation"),
negative_prompt: str = Input(
default=default_prompt_negative,
description="Negative prompt for image generation"),
style_selections: str = Input(
default=','.join(default_styles),
description="Fooocus styles applied for image generation, separated by comma"),
performance_selection: str = Input(
default='Speed',
choices=['Speed', 'Quality', 'Extreme Speed', 'Lightning'],
description="Performance selection"),
aspect_ratios_selection: str = Input(
default='1152*896',
choices=available_aspect_ratios,
description="The generated image's size"),
image_number: int = Input(
default=1,
ge=1, le=8,
description="How many image to generate"),
image_seed: int = Input(
default=-1,
description="Seed to generate image, -1 for random"),
use_default_loras: bool = Input(
default=True,
description="Use default LoRAs"),
loras_custom_urls: str = Input(
default="",
description="Custom LoRAs URLs in the format 'url,weight' provide multiple separated by ; (example 'url1,0.3;url2,0.1')"),
sharpness: float = Input(
default=2.0,
ge=0.0, le=30.0),
guidance_scale: float = Input(
default=default_cfg_scale,
ge=1.0, le=30.0),
refiner_switch: float = Input(
default=default_refiner_switch,
ge=0.1, le=1.0),
uov_input_image: Path = Input(
default=None,
description="Input image for upscale or variation, keep None for not upscale or variation"),
uov_method: str = Input(
default='Disabled',
choices=uov_methods),
uov_upscale_value: float = Input(
default=0,
description="Only when Upscale (Custom)"),
inpaint_additional_prompt: str = Input(
default='',
description="Prompt for image generation"),
inpaint_input_image: Path = Input(
default=None,
description="Input image for inpaint or outpaint, keep None for not inpaint or outpaint. Please noticed, `uov_input_image` has bigger priority is not None."),
inpaint_input_mask: Path = Input(
default=None,
description="Input mask for inpaint"),
outpaint_selections: str = Input(
default='',
description="Outpaint expansion selections, literal 'Left', 'Right', 'Top', 'Bottom' separated by comma"),
outpaint_distance_left: int = Input(
default=0,
description="Outpaint expansion distance from Left of the image"),
outpaint_distance_top: int = Input(
default=0,
description="Outpaint expansion distance from Top of the image"),
outpaint_distance_right: int = Input(
default=0,
description="Outpaint expansion distance from Right of the image"),
outpaint_distance_bottom: int = Input(
default=0,
description="Outpaint expansion distance from Bottom of the image"),
cn_img1: Path = Input(
default=None,
description="Input image for image prompt. If all cn_img[n] are None, image prompt will not applied."),
cn_stop1: float = Input(
default=None,
ge=0, le=1,
description="Stop at for image prompt, None for default value"),
cn_weight1: float = Input(
default=None,
ge=0, le=2,
description="Weight for image prompt, None for default value"),
cn_type1: str = Input(
default='ImagePrompt',
choices=['ImagePrompt', 'FaceSwap', 'PyraCanny', 'CPDS'],
description="ControlNet type for image prompt"),
cn_img2: Path = Input(
default=None,
description="Input image for image prompt. If all cn_img[n] are None, image prompt will not applied."),
cn_stop2: float = Input(
default=None,
ge=0, le=1,
description="Stop at for image prompt, None for default value"),
cn_weight2: float = Input(
default=None,
ge=0, le=2,
description="Weight for image prompt, None for default value"),
cn_type2: str = Input(
default='ImagePrompt',
choices=['ImagePrompt', 'FaceSwap', 'PyraCanny', 'CPDS'],
description="ControlNet type for image prompt"),
cn_img3: Path = Input(
default=None,
description="Input image for image prompt. If all cn_img[n] are None, image prompt will not applied."),
cn_stop3: float = Input(
default=None,
ge=0, le=1,
description="Stop at for image prompt, None for default value"),
cn_weight3: float = Input(
default=None,
ge=0, le=2,
description="Weight for image prompt, None for default value"),
cn_type3: str = Input(
default='ImagePrompt',
choices=['ImagePrompt', 'FaceSwap', 'PyraCanny', 'CPDS'],
description="ControlNet type for image prompt"),
cn_img4: Path = Input(
default=None,
description="Input image for image prompt. If all cn_img[n] are None, image prompt will not applied."),
cn_stop4: float = Input(
default=None,
ge=0, le=1,
description="Stop at for image prompt, None for default value"),
cn_weight4: float = Input(
default=None,
ge=0, le=2,
description="Weight for image prompt, None for default value"),
cn_type4: str = Input(
default='ImagePrompt',
choices=['ImagePrompt', 'FaceSwap', 'PyraCanny', 'CPDS'],
description="ControlNet type for image prompt")
) -> Output:
"""Run a single prediction on the model"""
from modules import flags
from modules.sdxl_styles import legal_style_names
from fooocusapi.worker import blocking_get_task_result, worker_queue
base_model_name = default_base_model_name
refiner_model_name = default_refiner_model_name
lora_manager = LoraManager()
# Use default loras if selected
loras = copy.copy(default_loras) if use_default_loras else []
# add custom user loras if provided
if loras_custom_urls:
urls = [url.strip() for url in loras_custom_urls.split(';')]
loras_with_weights = [url.split(',') for url in urls]
custom_lora_paths = lora_manager.check([lw[0] for lw in loras_with_weights])
custom_loras = [[path, float(lw[1]) if len(lw) > 1 else 1.0] for path, lw in
zip(custom_lora_paths, loras_with_weights)]
loras.extend(custom_loras)
style_selections_arr = []
for s in style_selections.strip().split(','):
style = s.strip()
if style in legal_style_names:
style_selections_arr.append(style)
if uov_input_image is not None:
im = Image.open(str(uov_input_image))
uov_input_image = np.array(im)
inpaint_input_image_dict = None
if inpaint_input_image is not None:
im = Image.open(str(inpaint_input_image))
inpaint_input_image = np.array(im)
if inpaint_input_mask is not None:
im = Image.open(str(inpaint_input_mask))
inpaint_input_mask = np.array(im)
inpaint_input_image_dict = {
'image': inpaint_input_image,
'mask': inpaint_input_mask
}
outpaint_selections_arr = []
for e in outpaint_selections.strip().split(','):
expansion = e.strip()
if expansion in outpaint_expansions:
outpaint_selections_arr.append(expansion)
image_prompts = []
image_prompt_config = [
(cn_img1, cn_stop1, cn_weight1, cn_type1),
(cn_img2, cn_stop2, cn_weight2, cn_type2),
(cn_img3, cn_stop3, cn_weight3, cn_type3),
(cn_img4, cn_stop4, cn_weight4, cn_type4)]
for config in image_prompt_config:
cn_img, cn_stop, cn_weight, cn_type = config
if cn_img is not None:
im = Image.open(str(cn_img))
cn_img = np.array(im)
if cn_stop is None:
cn_stop = flags.default_parameters[cn_type][0]
if cn_weight is None:
cn_weight = flags.default_parameters[cn_type][1]
image_prompts.append((cn_img, cn_stop, cn_weight, cn_type))
advanced_params = None
params = ImageGenerationParams(
prompt=prompt,
negative_prompt=negative_prompt,
style_selections=style_selections_arr,
performance_selection=performance_selection,
aspect_ratios_selection=aspect_ratios_selection,
image_number=image_number,
image_seed=image_seed,
sharpness=sharpness,
guidance_scale=guidance_scale,
base_model_name=base_model_name,
refiner_model_name=refiner_model_name,
refiner_switch=refiner_switch,
loras=loras,
uov_input_image=uov_input_image,
uov_method=uov_method,
upscale_value=uov_upscale_value,
outpaint_selections=outpaint_selections_arr,
inpaint_input_image=inpaint_input_image_dict,
image_prompts=image_prompts,
advanced_params=advanced_params,
inpaint_additional_prompt=inpaint_additional_prompt,
outpaint_distance_left=outpaint_distance_left,
outpaint_distance_top=outpaint_distance_top,
outpaint_distance_right=outpaint_distance_right,
outpaint_distance_bottom=outpaint_distance_bottom,
save_meta=True,
meta_scheme='fooocus',
save_extension='png',
save_name='',
require_base64=False,
)
print(f"[Predictor Predict] Params: {params.__dict__}")
async_task = worker_queue.add_task(
TaskType.text_2_img,
params)
if async_task is None:
print("[Task Queue] The task queue has reached limit")
raise Exception("The task queue has reached limit.")
results = blocking_get_task_result(async_task.job_id)
output_paths: List[Path] = []
output_seeds: List[str] = []
for r in results:
if r.finish_reason == GenerationFinishReason.success and r.im is not None:
output_seeds.append(r.seed)
output_paths.append(Path(os.path.join(output_dir, r.im)))
print(f"[Predictor Predict] Finished with {len(output_paths)} images")
if len(output_paths) == 0:
raise Exception("Process failed.")
return Output(seeds=output_seeds, paths=output_paths)