File size: 2,924 Bytes
36cd99b
 
 
 
 
 
 
 
 
 
 
 
 
 
768a789
36cd99b
 
 
212abe1
36cd99b
 
 
 
 
 
 
 
 
070b382
 
 
 
 
36cd99b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
070b382
36cd99b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
"""
Created By: ishwor subedi
Date: 2024-07-03
"""
import os
import cv2
import base64
import requests
import numpy as np
from io import BytesIO
from PIL import Image
from fastapi import File, UploadFile, Form, Depends
from fastapi import APIRouter
from fastapi.responses import JSONResponse
import json
from src.pipeline.main_pipeline import MainPipeline
from supabase import create_client

secure_router = APIRouter()

pipeline = MainPipeline()

SUPABASE_KEY = os.getenv("SUPABASE_KEY")
SUPABASE_URL = os.getenv("SUPABASE_URL")

supabase = create_client(SUPABASE_URL, SUPABASE_KEY)


def read_return(url):
    res = requests.get(url)
    return res.content


@secure_router.post("/mannequin_to_model")
async def mannequinToModel(
        store_name: str = Form(...),
        clothing_category: str = Form(...),
        product_id: str = Form(...),
        body_structure: str = Form(...),
        skin_complexion: str = Form(...),
        facial_structure: str = Form(...),
        person_img: UploadFile = File(...)
):
    if body_structure == "medium":
        body_structure = "fat"

    person_image = await person_img.read()

    mannequin_image_url = f"{SUPABASE_URL}/storage/v1/object/public/ClothingTryOn/{store_name}/{clothing_category}/{product_id}/{product_id}_{skin_complexion}_{facial_structure}_{body_structure}.webp"
    mannequin_img = read_return(mannequin_image_url)

    try:
        person_image, mannequin_image = Image.open(BytesIO(person_image)), Image.open(BytesIO(mannequin_img))
    except:

        error_message = {
            "code": 404,
            "error": "The requested resource is not available. Please verify the availability and try again."

        }

        return JSONResponse(content=error_message, status_code=404)

    mannequin_image = cv2.cvtColor(np.array(mannequin_image), cv2.COLOR_RGB2BGR)
    person_image = cv2.cvtColor(np.array(person_image), cv2.COLOR_RGB2BGR)
    result = pipeline.face_swap(mannequin_image, person_image)
    result = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
    inMemFile = BytesIO()
    result.save(inMemFile, format="WEBP", quality=85)
    outputBytes = inMemFile.getvalue()
    response = {
        "code": 200,
        "output": f"data:image/WEBP;base64,{base64.b64encode(outputBytes).decode('utf-8')}",
    }

    return response


@secure_router.get("/mannequin_catalogue")
async def returnJsonData(gender: str):
    folderImageURL = supabase.storage.get_bucket("JSON").create_signed_url(
        path=os.path.join("MannequinInfo.json"), expires_in=3600)["signedURL"]
    r = requests.get(folderImageURL).content.decode()

    mannequin_data = json.loads(r)

    if gender.lower() == "female":
        res = [item for item in mannequin_data if item["gender"] == "female"]
    elif gender.lower() == "male":
        res = [item for item in mannequin_data if item["gender"] == "male"]
    else:
        res = []

    return res